Functional localization of the system for visuospatial attention using positron emission tomography

被引:751
作者
Nobre, AC
Sebestyen, GN
Gitelman, DR
Mesulam, MM
Frackowiak, RSJ
Frith, CD
机构
[1] INST NEUROL,WELLCOME DEPT COGNIT NEUROL,LONDON WC1N 3BG,ENGLAND
[2] NORTHWESTERN UNIV,DEPT NEUROL,CHICAGO,IL 60611
基金
英国惠康基金;
关键词
PET; covert visuospatial attention; anterior cingulate; frontal eye fields; posterior parietal cortex;
D O I
10.1093/brain/120.3.515
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
PET was used to image the neural system underlying visuospatial attention. Analysis of data at both the group and individual-subject level provided anatomical resolution superior to that described to date. Six right-handed male subjects were selected from a pilot behavioural study in which behavioural responses and eye movements were recorded. The attention tasks involved covert shifts of attention, where peripheral cues indicated the location of subsequent target stimuli to be discriminated. One attention condition emphasized reflexive aspects of spatial orientation, while the other required controlled shifts of attention. PET activations agreed closely with the cortical regions recently proposed to form the core of a neural network for spatial attention. The two attention tasks evoked largely overlapping patterns of neural activation, supporting the existence of a general neural system for visuospatial attention with regional functional specialization. Specifically, neocortical activations were observed in the right anterior cingulate gyrus (Brodmann area 24), in the intraparietal sulcus of right posterior parietal cortex, and in the mesial and lateral premotor cortices (Brodmann area 6).
引用
收藏
页码:515 / 533
页数:19
相关论文
共 86 条
[1]   CALLOSAL AND PREFRONTAL ASSOCIATIONAL PROJECTING CELL-POPULATIONS IN AREA-7A OF THE MACAQUE MONKEY - A STUDY USING RETROGRADELY TRANSPORTED FLUORESCENT DYES [J].
ANDERSEN, RA ;
ASANUMA, C ;
COWAN, WM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 232 (04) :443-455
[2]  
ANDERSEN RA, 1989, ANNU REV NEUROSCI, V12, P377, DOI 10.1146/annurev.ne.12.030189.002113
[3]   ENCODING OF SPATIAL LOCATION BY POSTERIOR PARIETAL NEURONS [J].
ANDERSEN, RA ;
ESSICK, GK ;
SIEGEL, RM .
SCIENCE, 1985, 230 (4724) :456-458
[4]   CORTICAL CONTROL OF SACCADES AND FIXATION IN MAN - A PET STUDY [J].
ANDERSON, TJ ;
JENKINS, IH ;
BROOKS, DJ ;
HAWKEN, MB ;
FRACKOWIAK, RSJ ;
KENNARD, C .
BRAIN, 1994, 117 :1073-1084
[5]  
[Anonymous], NEUROSCIENTIST
[6]   SACCADE-RELATED ACTIVITY IN THE LATERAL INTRAPARIETAL AREA .1. TEMPORAL PROPERTIES - COMPARISON WITH AREA 7A [J].
BARASH, S ;
BRACEWELL, RM ;
FOGASSI, L ;
GNADT, JW ;
ANDERSEN, RA .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 66 (03) :1095-1108
[7]   ORGANIZATION OF AFFERENT INPUT TO SUBDIVISIONS OF AREA-8 IN THE RHESUS-MONKEY [J].
BARBAS, H ;
MESULAM, MM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1981, 200 (03) :407-431
[8]  
BRODMANN K, 1909, PRINZIPIEN DARGESTEL
[9]   VISUAL PROPERTIES OF NEURONS IN A POLYSENSORY AREA IN SUPERIOR TEMPORAL SULCUS OF THE MACAQUE [J].
BRUCE, C ;
DESIMONE, R ;
GROSS, CG .
JOURNAL OF NEUROPHYSIOLOGY, 1981, 46 (02) :369-384
[10]   PRIMATE FRONTAL EYE FIELDS .1. SINGLE NEURONS DISCHARGING BEFORE SACCADES [J].
BRUCE, CJ ;
GOLDBERG, ME .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (03) :603-635