Towards structural Genomics of RNA: Rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings

被引:55
作者
Al-Hashimi, HM
Gorin, A
Majumdar, A
Gosser, Y
Patel, DJ
机构
[1] Mem Sloan Kettering Canc Ctr, Cellular Biochem & Biophys Program, New York, NY 10021 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
基金
美国国家卫生研究院;
关键词
resonance assignments; residual dipolar couplings; ribonomics; structural genomics; HIV-I TAR;
D O I
10.1016/S0022-2836(02)00160-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly N-15/C-13-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assignment strategy. This approach involves examination of all allowed sequence-specific resonance assignment permutations for best-fit agreement between measured RDCs and coordinates for sub-structures in a target RNA. Using idealized A-form geometries to model Watson-Crick helices and coordinates from a previous X-ray structure to model a hairpin loop in TAR, the best-fit RDC assignment solutions are determined very rapidly (< five minutes of computational time) and are in complete agreement with corresponding NOE-based assignments. Orientational constraints derived from RDCs are used simultaneously to assemble sub-structures into an RNA tertiary conformation. Through enhanced speeds of application and reduced reliance on chemical shift dispersion, this RDC-based approach lays the foundation for rapidly determining RNA conformations in a structural genomics context, and may increase the size limit of RNAs that can be examined by NMR. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 64 条
[1]   Structure of HIV-1 TAB RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge [J].
AboulEla, F ;
Karn, J ;
Varani, G .
NUCLEIC ACIDS RESEARCH, 1996, 24 (20) :3974-3981
[2]   Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings [J].
Al-Hashimi, HM ;
Valafar, H ;
Terrell, M ;
Zartler, ER ;
Eidsness, MK ;
Prestegard, JH .
JOURNAL OF MAGNETIC RESONANCE, 2000, 143 (02) :402-406
[3]   Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings [J].
Al-Hashimi, HM ;
Gosser, Y ;
Gorin, A ;
Hu, WD ;
Majumdar, A ;
Patel, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (02) :95-102
[4]   Residual dipolar couplings: Synergy between NMR and structural genomics [J].
Al-Hashimi, HM ;
Patel, DJ .
JOURNAL OF BIOMOLECULAR NMR, 2002, 22 (01) :1-8
[5]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[6]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[7]   Dipolar couplings in macromolecular structure determination [J].
Bax, A ;
Kontaxis, G ;
Tjandra, N .
NUCLEAR MAGNETIC RESONANCE OF BIOLOGICAL MACROMOLECULES, PT B, 2001, 339 :127-174
[8]   A tour of structural genomics [J].
Brenner, SE .
NATURE REVIEWS GENETICS, 2001, 2 (10) :801-809
[9]   Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings [J].
Chou, JJ ;
Li, SP ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 2000, 18 (03) :217-227
[10]   Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses [J].
Clore, GM ;
Starich, MR ;
Gronenborn, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (40) :10571-10572