Genesis of a Cerium Oxide Supported Gold Catalyst for CO Oxidation: Transformation of Mononuclear Gold Complexes into Clusters as Characterized by X-Ray Absorption Spectroscopy

被引:30
作者
Aguilar-Guerrero, Veronica [1 ]
Lobo-Lapidus, Rodrigo J. [1 ]
Gates, Bruce C. [1 ]
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
关键词
WATER-GAS SHIFT; CARBON-MONOXIDE; ACTIVE GOLD; TEMPERATURE OXIDATION; FINE-STRUCTURE; SURFACE; ACTIVATION; REACTIVITY; OXYGEN; AU/GAMMA-AL2O3;
D O I
10.1021/jp808567a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CeO2-supported mononuclear gold species synthesized from Au(CH3)(2)(acac) catalyzed CO oxidation at 353 K, with a turnover frequency of 6.5 x 10(-3) molecules of CO (Au atom s)(-1) at CO and O-2 partial pressures of 1.0 and 0.5 kPa, respectively. As the catalyst functioned in a flow reactor, the activity increased markedly so that within about 10 h the conversion of CO had increased from about 1% to almost 100%. Activated catalyst samples were characterized by X-ray absorption spectroscopy and found to incorporate clusters of gold. which increased in size, undergoing reduction, with increasing time of operation. The X-ray absorption near-edge structure spectrum of the catalyst used for the longest period was indistinguishable from that characterizing gold foil. Extended X-ray absorption fine structure data characterizing the catalyst after the longest period of operation indicated the presence of clusters of approximately 30 Au atoms each, on average. The evidence that the catalytic activity increased as the clusters grew is contrasted with earlier reports pointing to increasing activity of supported gold clusters as they were made smaller-in a cluster size range largely exceeding ours.
引用
收藏
页码:3259 / 3269
页数:11
相关论文
共 43 条
[1]   Genesis of a highly active cerium oxide-supported gold catalyst for CO oxidation [J].
Aguilar-Guerrero, Veronica ;
Gates, Bruce C. .
CHEMICAL COMMUNICATIONS, 2007, (30) :3210-3212
[2]   Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold [J].
Aguilar-Guerrero, Veronica ;
Gates, Bruce C. .
JOURNAL OF CATALYSIS, 2008, 260 (02) :351-357
[3]   Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS [J].
Benfield, RE ;
Grandjean, D ;
Kröll, M ;
Pugin, R ;
Sawitowski, T ;
Schmid, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (10) :1961-1970
[4]   The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110) [J].
Bondzie, VA ;
Parker, SC ;
Campbell, CT .
CATALYSIS LETTERS, 1999, 63 (3-4) :143-151
[5]   Nanocrystalline CeO2 increases the activity of an for CO oxidation by two orders of magnitude [J].
Carrettin, S ;
Concepción, P ;
Corma, A ;
Nieto, JML ;
Puntes, VF .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (19) :2538-2540
[6]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[7]   Commercial aspects of gold catalysis [J].
Corti, CW ;
Holliday, RJ ;
Thompson, DT .
APPLIED CATALYSIS A-GENERAL, 2005, 291 (1-2) :253-261
[8]   Activation of Au/γ-Al2O3 catalysts for CO oxidation:: Characterization by X-ray absorption near edge structure and temperature programmed reduction [J].
Costello, CK ;
Guzman, J ;
Yang, JH ;
Wang, YM ;
Kung, MC ;
Gates, BC ;
Kung, HH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12529-12536
[9]   Nature of the active site for CO oxidation on highly active Au/γ-Al2O3 [J].
Costello, CK ;
Kung, MC ;
Oh, HS ;
Wang, Y ;
Kung, HH .
APPLIED CATALYSIS A-GENERAL, 2002, 232 (1-2) :159-168
[10]   Vital role of moisture in the catalytic activity of supported gold nanoparticles [J].
Daté, M ;
Okumura, M ;
Tsubota, S ;
Haruta, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2129-2132