Exponential stability of discrete-time filters for bounded observation noise

被引:38
作者
Budhiraja, A
Ocone, D
机构
[1] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[2] IOWA STATE UNIV, DEPT MATH, AMES, IA 50014 USA
关键词
Hilbert metric; Birkhoff's contraction coefficient; nonlinear filtering; asymptotic stability;
D O I
10.1016/S0167-6911(97)00012-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proves exponential asymptotic stability of discrete-time filters for the estimation of solutions to stochastic difference equations, when the observation noise is bounded. No assumption is made on the ergodicity of the signal. The proof uses the Hilbert projective metric, introduced into filter stability analysis by Atar and Zeitouni [1,2]. It is shown that when the signal noise is sufficiently regular, boundedness of the observation noise implies that the filter update operation is, on average, a strict contraction with respect to the Hilbert metric. Asymptotic stability then follows. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1991, APPL STOCHASTIC ANAL
[2]  
ATAR R, 1996, EXPONENTIAL STABILIT
[3]  
ATAR R, 1996, SIAM J CONTROL OPTIM
[4]  
Birkhoff G., 1967, AM MATH SOC C PUBL, VXXV
[5]  
CERO F, 1994, 2446 INRIA
[6]  
Kunita H., 1971, Journal of Multivariate Analysis, V1, P365, DOI 10.1016/0047-259X(71)90015-7
[7]  
KUNITA H, 1991, SPATIAL STOCHASTIC P
[8]  
Kwakernaak H., 1972, Linear optimal control systems
[9]   DECAY OF CORRELATIONS [J].
LIVERANI, C .
ANNALS OF MATHEMATICS, 1995, 142 (02) :239-301
[10]  
MAKOWSKI AM, 1992, IEEE T AUTOMAT CONTR, V33, P114