Downwind numbering: Robust multigrid for convection-diffusion problems

被引:45
作者
Bey, J
Wittum, G
机构
[1] UNIV STUTTGART,INST COMP ANWENDUNGEN,D-70550 STUTTGART,GERMANY
[2] UNIV TUBINGEN,INST MATH,D-72076 TUBINGEN,GERMANY
关键词
D O I
10.1016/S0168-9274(96)00067-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce and investigate a robust smoothing strategy for convection-diffusion problems in two and three space dimensions without any assumption on the grid structure. The main tool to obtain such a robust smoother for these problems is an ordering strategy for the grid points called ''downwind numbering'' which follows the flow direction and, combined with a Gauss-Seidel type smoother, yields robust multigrid convergence for adaptively refined grids, provided the convection field is cycle-free. The algorithms are of optimum complexity and the corresponding smoothers are shown to be robust in numerical tests.
引用
收藏
页码:177 / 192
页数:16
相关论文
共 32 条
[1]  
BANK RE, 1990, PLTMG SOFTWARE PACKA
[2]  
BANK RE, 1987, SC872
[3]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[4]  
Bastian P., 1994, MULTIGRID METHODS
[5]  
BASTIAN P, 1994, NOTES NUMER FLUID ME, V46
[6]  
BASTIAN P, 1994, THESIS U HEIDELBERG
[7]  
BASTIAN P, 1995, N895 ICA U STUTTG
[8]  
BASTIAN P, 1993, NOTES NUMER FLUID ME, V41
[9]   Tetrahedral grid refinement [J].
Bey, J .
COMPUTING, 1995, 55 (04) :355-378
[10]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6