The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide

被引:301
作者
Gribble, FM [1 ]
Tucker, SJ [1 ]
Ashcroft, FM [1 ]
机构
[1] UNIV OXFORD,PHYSIOL LAB,OXFORD OX1 3PT,ENGLAND
基金
英国惠康基金;
关键词
ATP-sensitive K-channel; diazoxide; ADP; Kir6.2; nucleotide; SUR1;
D O I
10.1093/emboj/16.6.1145
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ATP-sensitive K-channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates insulin secretion, and opened by the drug diazoxide, which inhibits insulin release, Metabolic regulation is mediated by changes in ATP and Mg-ADP, which inhibit and potentiate channel activity, respectively, The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. We have mutated (independently or together) two lysine residues in the Walker A (W-A) motifs of the first (K719A) and second (K1384M) nucleotide-binding domains (NBDs) of SUR1, These mutations are expected to inhibit nucleotide hydrolysis, Our results indicate that the W-A lysine of NBD1 (but not NBD2) is essential for activation of K-ATP currents by diazoxide, The potentiatory effects of Mg-ADP required the presence of the W-A lysines in both NBDs, Mutant currents were slightly more sensitive to ATP than wild-type currents, Metabolic inhibition led to activation of wildtype and K1384M currents, but not K719A or K719A/K1384M currents, suggesting that there may be a factor in addition to ATP and ADP which regulates K-ATP channel activity.
引用
收藏
页码:1145 / 1152
页数:8
相关论文
共 35 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]   The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells [J].
Ammala, C ;
Moorhouse, A ;
Ashcroft, FM .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (03) :709-714
[3]   ATP-SENSITIVE K+ CHANNELS IN RAT PANCREATIC BETA-CELLS - MODULATION BY ATP AND MG-2+ IONS [J].
ASHCROFT, FM ;
KAKEI, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :349-367
[4]   ELECTROPHYSIOLOGY OF THE PANCREATIC BETA-CELL [J].
ASHCROFT, FM ;
RORSMAN, P .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1989, 54 (02) :87-143
[5]   THE SULFONYLUREA RECEPTOR [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1175 (01) :45-49
[6]   PROPERTIES AND FUNCTIONS OF ATP-SENSITIVE K-CHANNELS [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
CELLULAR SIGNALLING, 1990, 2 (03) :197-214
[7]   DISCRETE MUTATIONS INTRODUCED IN THE PREDICTED NUCLEOTIDE-BINDING SITES OF THE MDR1 GENE ABOLISH ITS ABILITY TO CONFER MULTIDRUG RESISTANCE [J].
AZZARIA, M ;
SCHURR, E ;
GROS, P .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5289-5297
[8]   SEPARATE PROCESSES MEDIATE NUCLEOTIDE-INDUCED INHIBITION AND STIMULATION OF THE ATP-REGULATED K+-CHANNELS IN MOUSE PANCREATIC BETA-CELLS [J].
BOKVIST, K ;
AMMALA, C ;
ASHCROFT, FM ;
BERGGREN, PO ;
LARSSON, O ;
RORSMAN, P .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 243 (1307) :139-144
[9]   THE 2 NUCLEOTIDE-BINDING DOMAINS OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) HAVE DISTINCT FUNCTIONS IN CONTROLLING CHANNEL ACTIVITY [J].
CARSON, MR ;
TRAVIS, SM ;
WELSH, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1711-1717
[10]   THE INWARD RECTIFIER POTASSIUM CHANNEL FAMILY [J].
DOUPNIK, CA ;
DAVIDSON, N ;
LESTER, HA .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (03) :268-277