Engineering the plastid genome of higher plants

被引:132
作者
Maliga, P [1 ]
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1369-5266(02)00248-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plastid genome of higher plants is an attractive target for engineering because it provides readily obtainable high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs and gene containment through the lack of pollen transmission. A chloroplast-based expression system that is suitable for the commercial production of recombinant proteins in tobacco leaves has been developed recently. This expression system includes vectors, expression cassettes and site-specific recombinases for the selective elimination of marker genes. Progress in expressing proteins that are biomedically relevant, in engineering metabolic pathways, and in manipulating photosynthesis and agronomic traits is discussed, as are the problems of implementing the technology in crops.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 47 条
[1]   DIRECT SELECTION FOR PATERNAL INHERITANCE OF CHLOROPLASTS IN SEXUAL PROGENY OF NICOTIANA [J].
AVNI, A ;
EDELMAN, M .
MOLECULAR AND GENERAL GENETICS, 1991, 225 (02) :273-277
[2]   Participation of nuclear genes in chloroplast gene expression [J].
Barkan, A ;
Goldschmidt-Clermont, M .
BIOCHIMIE, 2000, 82 (6-7) :559-572
[3]   Transgenic plastids in basic research and plant biotechnology [J].
Bock, R .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (03) :425-438
[4]   KANAMYCIN RESISTANCE AS A SELECTABLE MARKER FOR PLASTID TRANSFORMATION IN TOBACCO [J].
CARRER, H ;
HOCKENBERRY, TN ;
SVAB, Z ;
MALIGA, P .
MOLECULAR AND GENERAL GENETICS, 1993, 241 (1-2) :49-56
[5]   Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system [J].
Corneille, S ;
Lutz, K ;
Svab, Z ;
Maliga, P .
PLANT JOURNAL, 2001, 27 (02) :171-178
[6]   Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts [J].
Daniell, H ;
Lee, SB ;
Panchal, T ;
Wiebe, PO .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (05) :1001-1009
[7]   Marker tree transgenic plants: engineering the chloroplast genome without the use of antibiotic selection [J].
Daniell, H ;
Muthukumar, B ;
Lee, SB .
CURRENT GENETICS, 2001, 39 (02) :109-116
[8]   Containment of herbicide resistance through genetic engineering of the chloroplast genome [J].
Daniell, H ;
Datta, R ;
Varma, S ;
Gray, S ;
Lee, SB .
NATURE BIOTECHNOLOGY, 1998, 16 (04) :345-348
[9]   Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals [J].
De Cosa, B ;
Moar, W ;
Lee, SB ;
Miller, M ;
Daniell, H .
NATURE BIOTECHNOLOGY, 2001, 19 (01) :71-74
[10]   Gene flow and introgression from domesticated plants into their wild relatives [J].
Ellstrand, NC ;
Prentice, HC ;
Hancock, JF .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1999, 30 :539-563