Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridization (FISH)

被引:84
作者
Nitta, Hiroaki [1 ]
Hauss-Wegrzyniak, Beatrice [2 ]
Lehrkamp, Megan [2 ]
Murillo, Adrian E. [2 ]
Gaire, Fabien [2 ]
Farrell, Michael [3 ]
Walk, Eric [1 ]
Penault-Llorca, Frederique [4 ]
Kurosumi, Masafumi [5 ]
Dietel, Manfred [6 ]
Wang, Lin [7 ,8 ]
Loftus, Margaret [7 ,8 ]
Pettay, James [7 ,8 ]
Tubbs, Raymond R. [7 ,8 ]
Grogan, Thomas M. [1 ,9 ]
机构
[1] Ventana Med Syst Inc, Off Med Affairs, Tucson, AZ USA
[2] Ventana Med Syst Inc, Adv Staining, Tucson, AZ USA
[3] Ventana Med Syst Inc, Discovery, Tucson, AZ USA
[4] Ctr Jean Perrin, Dept Pathol, Clermont Ferrand, France
[5] Saitama Canc Ctr, Pathol & Lab Med Inst, Saitama, Japan
[6] Charite, Inst Pathol, D-13353 Berlin, Germany
[7] Cleveland Clin Fdn, Pathol & Lab Med Inst, Cleveland, OH 44195 USA
[8] Cleveland Clin, Lerner Coll Med, Cleveland, OH 44106 USA
[9] Univ Arizona, Coll Med, Dept Pathol, Tucson, AZ 85721 USA
关键词
D O I
10.1186/1746-1596-3-41
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. Methods: The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark (R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. Results: Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). Conclusion: Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer [J].
Arnould, L ;
Denoux, Y ;
MacGrogan, G ;
Penault-Llorca, F ;
Fiche, M ;
Treilleux, I ;
Mathieu, MC ;
Vincent-Salomon, A ;
Vilain, MO ;
Couturier, J .
BRITISH JOURNAL OF CANCER, 2003, 88 (10) :1587-1591
[2]  
CAYRE A, 2007, BREAST CANC IN PRESS
[3]   HER-2 status in breast cancer - Correlation of gene amplification by FISH with immunohistochemistry expression using advanced cellular imaging system [J].
Ciampa, Armando ;
Xu, Bo ;
Ayata, Gamze ;
Baiyee, Daniel ;
Wallace, Jan ;
Wertheimer, Michael ;
Edmiston, Kathryn ;
Khan, Ashraf .
APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2006, 14 (02) :132-137
[4]   Correction for chromosome-17 is critical for the determination of true Her-2/neu gene amplification status in breast cancer [J].
Dal Lago, Lissandra ;
Durbecq, Virginie ;
Desmedt, Christine ;
Salgado, Roberto ;
Verjat, Thibault ;
Lespagnard, Laurence ;
Ma, Yan ;
Veys, Isabelle ;
Di Leo, Angelo ;
Sotiriou, Christos ;
Piccart, Martine ;
Larsimont, Denis .
MOLECULAR CANCER THERAPEUTICS, 2006, 5 (10) :2572-2579
[5]   111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure:: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity [J].
de Korte, M. A. ;
de Vries, E. G. E. ;
Lub-de Hooge, M. N. ;
Jager, P. L. ;
Gietema, J. A. ;
van der Graaf, W. T. A. ;
Sluiter, W. J. ;
van Veldhuisen, D. J. ;
Suter, T. M. ;
Sleiffer, D. T. ;
Perik, P. J. .
EUROPEAN JOURNAL OF CANCER, 2007, 43 (14) :2046-2051
[6]   Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists [J].
Dietel, M. ;
Ellis, I. O. ;
Hoefler, H. ;
Kreipe, H. ;
Moch, H. ;
Dankof, A. ;
Koelble, K. ;
Kristiansen, G. .
VIRCHOWS ARCHIV, 2007, 451 (01) :19-25
[7]   Analytical validation and interobserver reproducibility of EnzMet GenePro - A second-generation bright-field metallography assay for concomitant detection of HER2 gene status and protein expression in invasive carcinoma of the breast [J].
Downs-Kelly, E ;
Pettay, J ;
Hicks, D ;
Skacel, M ;
Yoder, B ;
Rybicki, L ;
Myles, J ;
Sreenan, J ;
Roche, P ;
Powell, R ;
Hainfeld, J ;
Grogan, T ;
Tubbs, R .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2005, 29 (11) :1505-1511
[8]   HER2 testing in the UK: consensus from a national consultation [J].
Dowsett, M. ;
Hanby, A. M. ;
Laing, R. ;
Walker, R. .
JOURNAL OF CLINICAL PATHOLOGY, 2007, 60 (06) :685-689
[9]   Standardization of HER2 testing:: results of an international proficiency-testing ring study [J].
Dowsett, Mitch ;
Hanna, Wedad M. ;
Kockx, Mark ;
Penault-Llorca, Frederique ;
Rueschoff, Josef ;
Gutjahr, Thorsten ;
Habben, Kai ;
van de Vijver, Marc J. .
MODERN PATHOLOGY, 2007, 20 (05) :584-591
[10]  
Fagnani F, 2007, B CANCER, V94, P711