Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

被引:111
作者
Bjerg, Lasse [1 ,2 ]
Iversen, Bo B. [1 ,2 ]
Madsen, Georg K. H. [3 ]
机构
[1] Aarhus Univ, Dept Chem, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, iNANO, DK-8000 Aarhus C, Denmark
[3] Ruhr Univ Bochum, ICAMS, Dept Atomist Modelling & Simulat, Bochum, Germany
基金
新加坡国家研究基金会;
关键词
AUGMENTED-WAVE METHOD; THERMOELECTRIC PROPERTIES; PHASE-TRANSITIONS; PHONON-GLASS; BETA-ZN4SB3; SCATTERING; STABILITY; CRYSTALS; DYNAMICS;
D O I
10.1103/PhysRevB.89.024304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Gruneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs [J].
Benson, Daryn ;
Sankey, Otto F. ;
Haeussermann, Ulrich .
PHYSICAL REVIEW B, 2011, 84 (12)
[2]   Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3 [J].
Bhattacharya, S. ;
Hermann, R. P. ;
Keppens, V. ;
Tritt, T. M. ;
Snyder, G. J. .
PHYSICAL REVIEW B, 2006, 74 (13)
[3]   Ab initio Calculations of Intrinsic Point Defects in ZnSb [J].
Bjerg, Lasse ;
Madsen, Georg K. H. ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2111-2116
[4]   Enhanced Thermoelectric Properties in Zinc Antimonides [J].
Bjerg, Lasse ;
Madsen, Georg K. H. ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :3907-3914
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Doping of p-type ZnSb: Single parabolic band model and impurity band conduction [J].
Bottger, P. H. Michael ;
Pomrehn, Gregory S. ;
Snyder, G. Jeffrey ;
Finstad, Terje G. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (12) :2753-2759
[7]   Influence of Ball-Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb [J].
Bottger, P. H. Michael ;
Valset, Kjetil ;
Deledda, Stefano ;
Finstad, Terje G. .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) :1583-1588
[8]   Preparation and thermoelectric properties of semiconducting Zn4Sb3 [J].
Caillat, T ;
Fleurial, JP ;
Borshchevsky, A .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (07) :1119-1125
[9]   Cation tracer diffusion in the thermoelectric materials Cu3Mo6Se8 and "β-Zn4Sb3" [J].
Chalfin, Eric ;
Lu, Hongxia ;
Dieckmann, Rudiger .
SOLID STATE IONICS, 2007, 178 (5-6) :447-456
[10]   Origin of the low thermal conductivity of the thermoelectric material β-Zn4Sb3: An ab initio theoretical study [J].
Chen, Weibing ;
Li, Jingbo .
APPLIED PHYSICS LETTERS, 2011, 98 (24)