Multiscale nature of network traffic

被引:192
作者
Abry, P [1 ]
Baraniuk, R [1 ]
Flandrin, P [1 ]
Riedi, R [1 ]
Veitch, D [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, F-69364 Lyon, France
基金
美国国家科学基金会;
关键词
D O I
10.1109/79.998080
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The complexity and richness of teletraffic is shown to be well matched by the multiscale analysis and modeling frameworks of self-similarity, long-range dependence, fractals, multifractals, and infinitely divisible cascades. These frameworks not only allow to confirm and formalize the presence of multiscale behavior in traffic, but also point to possible causes of multiscale structure in the physical networking infrastructure. Whatever choice of the framework, the multiscale wavelet transform provides a parsimonious and efficient domain for processing.
引用
收藏
页码:28 / 46
页数:19
相关论文
共 40 条
[1]   Wavelet analysis of long-range-dependent traffic [J].
Abry, P ;
Veitch, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :2-15
[2]  
Abry P., 1995, LECT NOTES STAT, P15, DOI DOI 10.1007/978-1-4612-2544-7_2
[3]  
Abry P., 2000, SELF SIMILAR NETWORK, P39, DOI [10.1002/047120644X.ch2, DOI 10.1002/047120644X.CH2]
[4]  
Arneodo A, 1997, J PHYS II, V7, P363, DOI 10.1051/jp2:1997130
[5]  
Beran J, 1994, STAT LONG MEMORY PRO
[6]  
Castaing B, 1996, J PHYS II, V6, P105, DOI 10.1051/jp2:1996172
[7]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[8]  
Erramilli A., 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), P352, DOI 10.1109/INFCOM.2000.832205
[9]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[10]  
Feldmann A, 1999, COMP COMM R, V29, P301, DOI 10.1145/316194.316235