Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor- and microscale investigations

被引:114
作者
Gieseke, A
Arnz, P
Amann, R
Schramm, A
机构
[1] Max Planck Inst Marine Microbiol, Mol Ecol Grp, D-28359 Bremen, Germany
[2] Tech Univ Munich, Inst Water Qual Control & Waste Management, D-85748 Garching, Germany
关键词
biofilm; enhanced biological phosphorus removal; fluorescence in situ hybridisation; microsensors; nitrification; oxygen budget; sequencing batch biofilm reactor;
D O I
10.1016/S0043-1354(01)00232-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A sequencing batch biofilm reactor (SBBR) with well established enhanced biological phosphate removal (EBPR) was subjected to higher ammonium concentrations to stimulate and eventually implement simultaneous nitrification. Changes of activity and populations were investigated by a combination of online monitoring, microsensor measurements and fluorescence in situ hybridisation (FISH) of biofilm sections. Nitrification and nitrifying bacteria were always restricted to the periodically oxic biofilm surface. Both, activity and population size increased significantly with higher ammonium concentrations. Nitrification always showed a delay after the onset of aeration, most likely due to competition for oxygen by coexisting P accumulating and other heterotrophic bacteria during the initial aeration phase. This view is also supported by comparing oxygen penetration and oxygen uptake rates under low and high ammonium conditions. Therefore, simultaneous nitrification and phosphorus removal in a P removing SBBR appears to be only possible with a sufficiently long oxic period to ensure oxygen availability for nitrifiers. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 23 条
[1]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[2]  
ARAZ P, 2001, WATER SCI TECHNOL, V43, P167
[3]   COMPETITION BETWEEN POLYPHOSPHATE AND POLYSACCHARIDE ACCUMULATING BACTERIA IN ENHANCED BIOLOGICAL PHOSPHATE REMOVAL SYSTEMS [J].
CECH, JS ;
HARTMAN, P .
WATER RESEARCH, 1993, 27 (07) :1219-1225
[4]   Metabolic transformations and characterisation of the sludge community in an enhanced biological phosphorus removal system [J].
Christensson, M ;
Blackall, LL ;
Welander, T .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1998, 49 (02) :226-234
[5]   Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants:: diversity and in situ physiology [J].
Daims, H ;
Nielsen, PH ;
Nielsen, JL ;
Juretschko, S ;
Wagner, M .
WATER SCIENCE AND TECHNOLOGY, 2000, 41 (4-5) :85-90
[6]   A nitrite microsensor for profiling environmental biofilms [J].
deBeer, D ;
Schramm, A ;
Santegoeds, CM ;
Kuhl, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (03) :973-977
[7]  
ERHART R, 1997, THESIS U MUNICH MUNI
[8]   PHYLOGENETIC OLIGODEOXYNUCLEOTIDE PROBES FOR THE MAJOR SUBCLASSES OF PROTEOBACTERIA - PROBLEMS AND SOLUTIONS [J].
MANZ, W ;
AMANN, R ;
LUDWIG, W ;
WAGNER, M ;
SCHLEIFER, KH .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1992, 15 (04) :593-600
[9]   Microbiology and biochemistry of the enhanced biological phosphate removal process [J].
Mino, T ;
Van Loosdrecht, MCM ;
Heijnen, JJ .
WATER RESEARCH, 1998, 32 (11) :3193-3207
[10]   Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [J].
Mobarry, BK ;
Wagner, M ;
Urbain, V ;
Rittmann, BE ;
Stahl, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (06) :2156-2162