Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks

被引:200
作者
Claussen, Jonathan C. [1 ,2 ]
Franklin, Aaron D. [1 ,3 ]
ul Haque, Aeraj [4 ,5 ]
Porterfield, D. Marshall [4 ,5 ]
Fisher, Timothy S. [1 ,2 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Bindley Biosci Ctr, Physiol Sensing Facil, W Lafayette, IN 47907 USA
关键词
carbon nanotubes; glucose biosensor; nanoparticles; nanocubes; fluorescence; DIRECT ELECTRON-TRANSFER; GLUCOSE-OXIDASE; GOLD NANOPARTICLES; METAL NANOPARTICLES; ENZYME; DNA; ELECTRODEPOSITION; IMMOBILIZATION; FABRICATION; COMPOSITES;
D O I
10.1021/nn800682m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Networks of single-walled carbon nanotubes (SWCNTs) decorated with Au-coated Pd (Au/Pd) nanocubes are employed as electrochemical biosensors that exhibit excellent sensitivity (2.6 mA mM(-1) cm(-2)) and a low estimated detection limit (2.3 nM) at a signal-to-noise ratio of 3 (S/N = 3) in the amperometric sensing of hydrogen peroxide. Biofunctionalization of the Au/Pd nanocube-SWCNT biosensor is demonstrated with the selective immobilization of fluorescently labeled streptavidin on the nanocube surfaces via thiol linking. Similarly, glucose oxidase (GOx) is linked to the surface of the nanocubes for amperometric glucose sensing. The exhibited glucose detection limit of 1.3 mu M (S/N = 3) and linear range spanning from 10 mu M to 50 mM substantially surpass similar CNT-based biosensors. These results, combined with the structure's compatibility with a wide range of biofunctionalization procedures, would make the nanocube-SWCNT biosensor exceptionally useful for glucose detection in diabetic patients and well suited for a wide range of amperometric detection schemes for clinically important biomarker.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 53 条
[1]   Biosensors based on carbon nanotubes [J].
Balasubramanian, Kannan ;
Burghard, Marko .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 385 (03) :452-468
[2]   New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite [J].
Banks, CE ;
Compton, RG .
ANALYST, 2006, 131 (01) :15-21
[3]   A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme [J].
Bharathi, S ;
Nogami, M .
ANALYST, 2001, 126 (11) :1919-1922
[4]   Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection [J].
Cai, H ;
Cao, XN ;
Jiang, Y ;
He, PG ;
Fang, YZ .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 375 (02) :287-293
[5]   Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles [J].
Chen, Shihong ;
Yuan, Ruo ;
Chai, Yaqin ;
Zhang, Lingyan ;
Wang, Na ;
Li, Xuelian .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (07) :1268-1274
[6]   Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks [J].
Day, TM ;
Unwin, PR ;
Wilson, NR ;
Macpherson, JV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (30) :10639-10647
[7]   Electrochemical DNA sensors [J].
Drummond, TG ;
Hill, MG ;
Barton, JK .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1192-1199
[8]   Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces [J].
Ferretti, S ;
Paynter, S ;
Russell, DA ;
Sapsford, KE ;
Richardson, DJ .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2000, 19 (09) :530-540
[9]   Controlled decoration of single-walled carbon nanotubes with Pd nanocubes [J].
Franklin, Aaron D. ;
Smith, Joshua T. ;
Sands, Timothy ;
Fisher, Timothy S. ;
Choi, Kyoung-Shin ;
Janes, David B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (37) :13756-13762
[10]   In-place fabrication of nanowire electrode arrays for vertical nanoelectronics on Si substrates [J].
Franklin, Aaron D. ;
Maschmann, Matthew R. ;
DaSilva, Manuel ;
Janes, David B. ;
Fisher, Timothy S. ;
Sands, Timothy D. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (02) :343-347