Overproduced Bcl-2 oncoprotein has been shown to suppress cell death induced by a variety of stimuli in many cell types, including neuronal cells. Because bcl-2 is expressed in the nervous system where massive cell death is observed during development, endogenous Bcl-2 is likely to be involved in regulating neuronal cell death. Here we examined the possible role of endogenous Bcl-2 in the regulation of neuronal cell survival in the central nervous system using primary cultured cerebellar granule neurons from bcl-2-deficient, wild-type and NSE-bcl-2-transgenic mice. Cerebellar granule neurons from bcl-2-deficient mice were more susceptible than those from normal littermates to death induced by reducing the K+ concentration of the medium from high (25 mM) to low (5 mM), and neurons from bcl-2-transgenic mice were least susceptible. Similar results were obtained when cell death was induced by serum withdrawal under high Kf conditions or by the presence of etoposide, A23187 or nimodipine. Consistently, bcl-2 deficiency reduced the number of cerebellar granule neurons per mouse. These results indicate that Bcl-2 impedes neuronal cell death induced by various stimuli in a dose-dependent manner, and that endogenous levels of Bcl-2 are able to regulate neuronal cell survival in the central nervous system.