Comparative proteomic analysis provides new insights into chilling stress responses in rice

被引:419
作者
Yan, SP
Zhang, QY
Tang, ZC
Su, WA
Sun, WN
机构
[1] Chinese Acad Sci, Grad Sch, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China
[2] Shanghai Med Univ 2, State Key Lab Med Gen, Ruijin Hosp, Shanghai 200025, Peoples R China
关键词
D O I
10.1074/mcp.M500251-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Low temperature is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of chilling stress responses in rice (Oryza sativa L. cv. Nipponbare), we carried out a comparative proteomic analysis. Three-week-old rice seedlings were treated at 6 degrees C for 6 or 24 h and then recovered for 24 h. Chilling treatment resulted in stress phenotypes of rolling leaves, increased relative electrolyte leakage, and decreased net photosynthetic rate. The temporal changes of total proteins in rice leaves were examined using two-dimensional electrophoresis. Among similar to 1,000 protein spots reproducibly detected on each gel, 31 protein spots were down-regulated, and 65 were up-regulated at least at one time point. Mass spectrometry analysis allowed the identification of 85 differentially expressed proteins, including well known and novel cold-responsive proteins. Several proteins showed enhanced degradation during chilling stress, especially the photosynthetic proteins such as Rubisco large subunit of which 19 fragments were detected. The identified proteins are involved in several processes, i.e. signal transduction, RNA processing, translation, protein processing, redox homeostasis, photosynthesis, photorespiration, and metabolisms of carbon, nitrogen, sulfur, and energy. Gene expression analysis of 44 different proteins by quantitative real time PCR showed that the mRNA level was not correlated well with the protein level. In conclusion, our study provides new insights into chilling stress responses in rice and demonstrates the advantages of proteomic analysis.
引用
收藏
页码:484 / 496
页数:13
相关论文
共 45 条
[1]  
Agarwal GK, 2002, PROTEOMICS, V2, P947, DOI 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO
[2]  
2-J
[3]   Impacts of chilling temperatures on photosynthesis in warm-climate plants [J].
Allen, DJ ;
Ort, DR .
TRENDS IN PLANT SCIENCE, 2001, 6 (01) :36-42
[4]   Analysis of the Arabidopsis nuclear proteome and its response to cold stress [J].
Bae, MS ;
Cho, EJ ;
Choi, EY ;
Park, OK .
PLANT JOURNAL, 2003, 36 (05) :652-663
[5]   Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis [J].
Candiano, G ;
Bruschi, M ;
Musante, L ;
Santucci, L ;
Ghiggeri, GM ;
Carnemolla, B ;
Orecchia, P ;
Zardi, L ;
Righetti, PG .
ELECTROPHORESIS, 2004, 25 (09) :1327-1333
[6]   Discordant protein and mRNA expression in lung adenocarcinomas [J].
Chen, GA ;
Gharib, TG ;
Huang, CC ;
Taylor, JMG ;
Misek, DE ;
Kardia, SLR ;
Giordano, TJ ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, SM ;
Beer, DG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (04) :304-313
[7]   Genomic approaches to plant stress tolerance [J].
Cushman, JC ;
Bohnert, HJ .
CURRENT OPINION IN PLANT BIOLOGY, 2000, 3 (02) :117-124
[8]   Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley [J].
Desimone, M ;
Henke, A ;
Wagner, E .
PLANT PHYSIOLOGY, 1996, 111 (03) :789-796
[9]   Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J].
Fowler, S ;
Thomashow, MF .
PLANT CELL, 2002, 14 (08) :1675-1690
[10]   Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses [J].
Foyer, CH ;
Noctor, G .
PLANT CELL, 2005, 17 (07) :1866-1875