Effective constraint potential for Abelian monopole in SU(2) lattice gauge theory

被引:67
作者
Chernodub, MN [1 ]
Polikarpov, MI [1 ]
Veselov, AI [1 ]
机构
[1] KANAZAWA UNIV, DEPT PHYS, KANAZAWA, ISHIKAWA 92011, JAPAN
基金
日本学术振兴会;
关键词
D O I
10.1016/S0370-2693(97)00309-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe numerical calculation results for the probability distribution of the value of the monopole creation operator in the SU(2) lattice gluodynamics. We work in the maximal Abelian projection. It occurs that at low temperatures, below the deconfinement phase transition, the maximum of the distribution is shifted from zero, which means that the effective constraint potential is of the Higgs type. Above the phase transition the minimum of the potential (the maximum of the monopole held distribution) is at the zero value of the monopole field. This fact confirms the existence of the Abelian monopole condensate in the confinement phase of lattice gluodynamics, and agrees with the dual superconductor model of the confining vacuum. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 24 条
[1]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[2]   THE DIRAC-KAHLER EQUATION AND FERMIONS ON THE LATTICE [J].
BECHER, P ;
JOOS, H .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1982, 15 (04) :343-365
[3]   Monopole order parameter in SU(2) lattice gauge theory [J].
Chernodub, MN ;
Polikarpov, MI ;
Veselov, AI .
NUCLEAR PHYSICS B, 1996, :307-311
[4]   CONFINEMENT MECHANISM IN VARIOUS ABELIAN PROJECTIONS OF SU(2) LATTICE GLUODYNAMICS [J].
CHERNODUB, MN ;
POLIKARPOV, MI ;
VESELOV, AI .
PHYSICS LETTERS B, 1995, 342 (1-4) :303-310
[5]  
DELDEBBIO L, 1995, PHYS LETT B, V349, P513, DOI 10.1016/0370-2693(95)00266-N
[6]   COLOR CONFINEMENT AS DUAL MEISSNER EFFECT - SU(2) GAUGE-THEORY [J].
DELDEBBIO, L ;
DIGIACOMO, A ;
PAFFUTI, G ;
PIERI, P .
PHYSICS LETTERS B, 1995, 355 (1-2) :255-259
[7]  
DELDEBBIO L, LATT 96 S
[8]   GAUGE-INVARIANT FORMULATION OF QUANTUM ELECTRODYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF PHYSICS, 1955, 33 (11) :650-660
[9]   SOLITON QUANTIZATION IN LATTICE FIELD-THEORIES [J].
FROHLICH, J ;
MARCHETTI, PA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (02) :343-383
[10]   GAUGE-FIXING AMBIGUITY AND MONOPOLE NUMBER [J].
HIOKI, S ;
KITAHARA, S ;
MATSUBARA, Y ;
MIYAMURA, O ;
OHNO, S ;
SUZUKI, T .
PHYSICS LETTERS B, 1991, 271 (1-2) :201-207