TEDS site phosphorylation of the yeast myosins I is required for ligand-induced but not for constitutive endocytosis of the G protein-coupled receptor Ste2p

被引:25
作者
Grosshans, BL
Grötsch, H
Mukhopadhyay, D
Fernández, IM
Pfannstiel, J
Idrissi, FZ
Lechner, J
Riezman, H
Geli, MI
机构
[1] CSIC, Inst Biol Mol Barcelona, ES-08034 Barcelona, Spain
[2] Biochem Zentrum Heidelberg, D-69120 Heidelberg, Germany
[3] Dept Biochim, CH-1211 Geneva, Switzerland
关键词
D O I
10.1074/jbc.M508933200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The yeast myosins I Myo3p and Myo5p have well established functions in the polarization of the actin cytoskeleton and in the endocytic uptake of the G protein-coupled receptor Ste2p. A number of results suggest that phosphorylation of the conserved TEDS serine of the myosin I motor head by the Cdc42p activated p21-activated kinases Ste20p and Cla4p is required for the organization of the actin cytoskeleton. However, the role of this signaling cascade in the endocytic uptake has not been investigated. Interestingly, we find that Myo5p TEDS site phosphorylation is not required for slow, constitutive endocytosis of Ste2p, but it is essential for rapid, ligand-induced internalization of the receptor. Our results strongly suggest that a kinase activates the myosins I to sustain fast endocytic uptake. Surprisingly, however, despite the fact that only p21-activated kinases are known to phosphorylate the conserved TEDS site, we find that these kinases are not essential for ligand-induced internalization of Ste2p. Our observations indicate that a different signaling cascade, involving the yeast homologues of the mammalian PDK1 (3-phosphoinositide-dependent-protein kinase-1), Phk1p and Pkh2p, and serum and glucocorticoid-induced kinase, Ypk1p and Ypk2p, activate Myo3p and Myo5p for their endocytic function.
引用
收藏
页码:11104 / 11114
页数:11
相关论文
共 67 条
[1]   Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud [J].
Adamo, JE ;
Moskow, JJ ;
Gladfelter, AS ;
Viterbo, D ;
Lew, DJ ;
Brennwald, PJ .
JOURNAL OF CELL BIOLOGY, 2001, 155 (04) :581-592
[2]   PAK to the future [J].
Bagrodia, S ;
Cerione, RA .
TRENDS IN CELL BIOLOGY, 1999, 9 (09) :350-355
[3]   QUANTIFICATION AND LOCALIZATION OF PHOSPHORYLATED MYOSIN-I ISOFORMS IN ACANTHAMOEBA-CASTELLANII [J].
BAINES, IC ;
CORIGLIANOMURPHY, A ;
KORN, ED .
JOURNAL OF CELL BIOLOGY, 1995, 130 (03) :591-603
[4]   TEDS RULE - A MOLECULAR RATIONALE FOR DIFFERENTIAL REGULATION OF MYOSINS BY PHOSPHORYLATION OF THE HEAVY-CHAIN HEAD [J].
BEMENT, WM ;
MOOSEKER, MS .
CELL MOTILITY AND THE CYTOSKELETON, 1995, 31 (02) :87-92
[5]   THE END3 GENE ENCODES A PROTEIN THAT IS REQUIRED FOR THE INTERNALIZATION STEP OF ENDOCYTOSIS AND FOR ACTIN CYTOSKELETON ORGANIZATION IN YEAST [J].
BENEDETTI, H ;
RATHS, S ;
CRAUSAZ, F ;
RIEZMAN, H .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (09) :1023-1037
[6]   Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis [J].
Benton, BK ;
Tinkelenberg, A ;
Gonzalez, I ;
Cross, FR .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5067-5076
[7]   A GTPase-independent mechanism of p21-activated kinase activation - Regulation by sphingosine and other biologically active lipids [J].
Bokoch, GM ;
Reilly, AM ;
Daniels, RH ;
King, CC ;
Olivera, A ;
Spiegel, S ;
Knaus, UG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :8137-8144
[8]   p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I [J].
Brzeska, H ;
Knaus, UG ;
Wang, ZY ;
Bokoch, GM ;
Korn, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (04) :1092-1095
[9]   Myosin I heavy chain kinase: Cloning of the full-length gene and acidic lipid-dependent activation by Rac and Cdc42 [J].
Brzeska, H ;
Young, R ;
Knaus, U ;
Korn, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :394-399
[10]   Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast [J].
Casamayor, A ;
Torrance, PD ;
Kobayashi, T ;
Thorner, J ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (04) :186-197