Supercapacitors based on conducting polymers/nanotubes composites

被引:803
作者
Frackowiak, E
Khomenko, V
Jurewicz, K
Lota, K
Béguin, F
机构
[1] Poznan Univ Tech, PL-60965 Poznan, Poland
[2] Univ Orleans, CNRS, CRMD, F-45071 Orleans, France
关键词
supercapacitor; carbon nanotubes; polyaniline; polypyrrole; PEDOT;
D O I
10.1016/j.jpowsour.2005.05.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three types of electrically conducting polymers (ECPs), i.e. polyaniline (PANI), polypyrrole (PPy) and poly-(3,4-ethylenedioxythiophene) (PEDOT) have been tested as supercapacitor electrode materials in the form of composites with multiwalled carbon nanotubes (CNTs). The energy storage in such a type of composite combines an electrostatic attraction as well as quick faradaic processes called pseudo-capacitance. It has been shown that carbon nanotubes play the role of a perfect backbone for a homogenous distribution of ECP in the composite. It is well known that pure conducting polymers are mechanically weak, hence, the carbon nanotubes preserve the ECP active material from mechanical changes (shrinkage and breaking) during long cycling. Apart of excellent conducting and mechanical properties, the presence of nanotubes improves also the charge transfer that enables a high charge/discharge rate. For an optimal use of ECPs in electrochemical capacitors, a special electrode composition with ca. 20 wt.% of CNTs and a careful selection of the potential range is necessary. The capacitance values ranging from 100 to 330 F g(-1) could be reached for different asymmetric configurations with a capacitor voltage from 0.6 to 1.8 V. It is also noteworthy that such a type of ECP/CNTs composite does not need any binding substance that is an important practical advantage. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 16 条
[1]   New trends in electrochemical supercapacitors [J].
Arbizzani, C ;
Mastragostino, M ;
Soavi, F .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :164-170
[2]   Characterization and long-term performance of polyaniline-based electrochemical capacitors [J].
Bélanger, D ;
Ren, XM ;
Davey, J ;
Uribe, F ;
Gottesfeld, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2923-2929
[3]   Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors [J].
Carlberg, JC ;
Inganas, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :L61-L64
[4]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, DOI DOI 10.1007/978-1-4757-3058-6
[5]   High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed cobalt nanoparticles [J].
Delpeux, S ;
Szostak, K ;
Frackowiak, E ;
Bonnamy, S ;
Béguin, F .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2002, 2 (05) :481-484
[6]   Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2002, 40 (10) :1775-1787
[7]   Nanotubular materials for supercapacitors [J].
Frackowiak, E ;
Jurewicz, K ;
Delpeux, S ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2001, 97-8 :822-825
[8]  
Frackowiak E., 2004, ENCY NANOSCIENCE NAN, P537
[9]   Supercapacitors from nanotubes/polypyrrole composites [J].
Jurewicz, K ;
Delpeux, S ;
Bertagna, V ;
Béguin, F ;
Frackowiak, E .
CHEMICAL PHYSICS LETTERS, 2001, 347 (1-3) :36-40
[10]   Principles and applications of electrochemical capacitors [J].
Kötz, R ;
Carlen, M .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2483-2498