Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure

被引:79
作者
Yao, Mingguang [1 ]
Wang, Zhigang [2 ,3 ,4 ]
Liu, Bingbing [1 ]
Zou, Yonggang [1 ]
Yu, Shidan [1 ]
Lin, Wang [1 ]
Hou, Yuanyuan [1 ]
Pan, Shoufu [2 ,3 ]
Jin, Mingxing [2 ]
Zou, Bo [1 ]
Cui, Tian [1 ]
Zou, Guangtian [1 ]
Sundqvist, B. [5 ]
机构
[1] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China
[3] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[5] Umea Univ, Dept Phys, S-90187 Umea, Sweden
基金
中国国家自然科学基金; 中国博士后科学基金; 瑞典研究理事会;
关键词
D O I
10.1103/PhysRevB.78.205411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Raman spectra of single-walled carbon nanotubes (SWNTs) with diameters of 0.6-1.3 nm have been studied under high pressure. A "plateau" in the pressure dependence of the G-band frequencies was observed in all experiments, both with and without pressure transmission medium. Near the onset of the G-band plateau, the corresponding radial breathing mode (RBM) lines become very weak. A strong broadening of the full width at half maximum of the RBMs just before the onset of the G-band plateau suggests that a structural transition starts in the SWNTs. Raman spectra from SWNTs released from different pressures also indicate that a significant structural transition occurs during the G-band plateau process. Simulations of the structural changes and the corresponding Raman modes of a nanotube under compression show a behavior similar to the experimental observations. Based on the experimental results and the theoretical simulation, a detailed model is suggested for the structural transition of SWNTs, corresponding to the experimentally obtained Raman results in the high-pressure domain.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres [J].
Amer, MS ;
El-Ashry, MM ;
Maguire, JF .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06) :2752-2757
[2]   Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation [J].
Caillier, Ch. ;
Machon, D. ;
San-Miguel, A. ;
Arenal, R. ;
Montagnac, G. ;
Cardon, H. ;
Kalbac, M. ;
Zukalova, M. ;
Kavan, L. .
PHYSICAL REVIEW B, 2008, 77 (12)
[3]   Mechanical energy storage in carbon nanotube springs [J].
Chesnokov, SA ;
Nalimova, VA ;
Rinzler, AG ;
Smalley, RE ;
Fischer, JE .
PHYSICAL REVIEW LETTERS, 1999, 82 (02) :343-346
[4]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .9. EXTENDED GAUSSIAN-TYPE BASIS FOR MOLECULAR-ORBITAL STUDIES OF ORGANIC MOLECULES [J].
DITCHFIELD, R ;
HEHRE, WJ ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (02) :724-+
[5]   Resonance Raman spectrum of all-trans-spheroidene.: DFT analysis and isotope labeling [J].
Dokter, AM ;
van Hemert, MC ;
In 't Velt, CM ;
van der Hoef, K ;
Lugtenburg, J ;
Frank, HA ;
Groenen, EJJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (41) :9463-9469
[6]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN
[7]   Collapse of single-wall carbon nanotubes is diameter dependent [J].
Elliott, JA ;
Sandler, JKW ;
Windle, AH ;
Young, RJ ;
Shaffer, MSP .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :095501-1
[8]  
Frisch M. J., 2004, GAUSSIAN 03 REVISION
[9]   High-pressure thermoelasticity of body-centered-cubic tantalum -: art. no. 064103 [J].
Gülseren, O ;
Cohen, RE .
PHYSICAL REVIEW B, 2002, 65 (06) :641031-641035
[10]   Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure [J].
Hasegawa, Masayuki ;
Nishidate, Kazume .
PHYSICAL REVIEW B, 2006, 74 (11)