A cone complementarity linearization algorithm for static output-feedback and related problems

被引:1470
作者
ElGhaoui, L
Oustry, F
AitRami, M
机构
[1] Laboratoire de Mathématiques Appliquées, Ecole Nationale Supérieure de Techniques Avancées
关键词
complementarity problem; linear matrix inequality; reduced-order stabilization; static output feedback;
D O I
10.1109/9.618250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a linear matrix inequality (LMI)-based algorithm for the static and reduced-order output-feedback synthesis problems of nth-order linear time-invariant (LTI) systems with n(u) (respectively, n(y)) independent inputs (respectively, outputs), The algorithm is based on a ''cone complementarity'' formulation of the problem and is guaranteed to produce a stabilizing controller of order m less than or equal to n - max(n(u), n(y)), matching a generic stabilizability result of Davison and Chatterjee [7], Extensive numerical experiments indicate that the algorithm finds a controller with order less than or equal to that predicted by Kimura's generic stabilizability result (m less than or equal to n-n(u)-n(y)+1). A similar algorithm can be applied to a variety of control problems, including robust control synthesis.
引用
收藏
页码:1171 / 1176
页数:6
相关论文
共 27 条
[1]  
ABOYD S, 1993, NUMERICAL LINEAR ALG, V188
[2]   OUTPUT FEEDBACK STABILIZATION AND RELATED PROBLEMS - SOLUTION VIA DECISION METHODS [J].
ANDERSON, BD ;
BOSE, NK ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) :53-66
[3]  
BHATTACHARYYA SP, 1987, LECT NOTES CONTROL I, V99
[4]  
BLONDEL V, 1995, EUROPEAN J CONTR, V1
[5]  
Boyd S, 1994, STUDIES APPL MATH, V15
[6]  
DAVID J, 1994, THESIS ESAT LEUVEN
[7]   POLE ASSIGNMENT IN LINEAR SYSTEMS WITH INCOMPLETE STATE FEEDBACK [J].
DAVISON, EJ ;
CHATTERJEEA, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (01) :98-+
[8]  
Doyle J., 1991, P IEEE C DEC CONTR B, V2, P1227
[9]  
ELGHAOUI L, 1995, LMITOOL FRONT END LM
[10]  
ELGHAOUI L, 1995, LMI BASED LINEARIZAT