Latent Dirichlet Allocation for Spatial Analysis of Satellite Images

被引:68
作者
Vaduva, Corina [1 ]
Gavat, Inge [1 ]
Datcu, Mihai [1 ,2 ]
机构
[1] Univ Politehn Bucuresti, Res Ctr Spatial Informat, Dept Appl Elect & Informat Engn, Fac Elect Telecommun & Informat Technol, Bucharest 061071, Romania
[2] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Oberpfaffenhofen, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 05期
关键词
High-level image understanding; invariant signatures; latent Dirichlet allocation (LDA); spatial relationships; RELATIVE POSITION; INFORMATION; RETRIEVAL; WORDS;
D O I
10.1109/TGRS.2012.2219314
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper describes research that seeks to supersede human inductive learning and reasoning in high-level scene understanding and content extraction. Searching for relevant knowledge with a semantic meaning consists mostly in visual human inspection of the data, regardless of the application. The method presented in this paper is an innovation in the field of information retrieval. It aims to discover latent semantic classes containing pairs of objects characterized by a certain spatial positioning. A hierarchical structure is recommended for the image content. This approach is based on a method initially developed for topics discovery in text, applied this time to invariant descriptors of image region or objects configurations. First, invariant spatial signatures are computed for pairs of objects, based on a measure of their interaction, as attributes for describing spatial arrangements inside the scene. Spatial visual words are then defined through a simple classification, extracting new patterns of similar object configurations. Further, the scene is modeled according to these new patterns (spatial visual words) using the latent Dirichlet allocation model into a finite mixture over an underlying set of topics. In the end, some statistics are done to achieve a better understanding of the spatial distributions inside the discovered semantic classes.
引用
收藏
页码:2770 / 2786
页数:17
相关论文
共 19 条
  • [1] Learning Bayesian classifiers for scene classification with a visual grammar
    Aksoy, S
    Koperski, K
    Tusk, C
    Marchisio, G
    Tilton, JC
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 581 - 589
  • [2] [Anonymous], 2003, WILEY HOBOKEN
  • [3] Matching words and pictures
    Barnard, K
    Duygulu, P
    Forsyth, D
    de Freitas, N
    Blei, DM
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (06) : 1107 - 1135
  • [4] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [5] Scene parsing using region-based generative models
    Boutell, Matthew R.
    Luo, Jiebo
    Brown, Christopher M.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (01) : 136 - 146
  • [6] Bratasanu D., 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, V4, P193, DOI DOI 10.1109/JSTARS.2010.2081349
  • [7] Human-centered concepts for exploration and understanding of earth observation images
    Datcu, M
    Seidel, K
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 601 - 609
  • [8] Generalized spatial dirichlet process models
    Duan, Jason A.
    Guindani, Michele
    Gelfand, Alan E.
    [J]. BIOMETRIKA, 2007, 94 (04) : 809 - 825
  • [9] Egenhofer M. J., 1990, Proceedings of the 4th International Symposium on Spatial Data Handling, P803
  • [10] Contextual Bag-of-Words for Visual Categorization
    Li, Teng
    Mei, Tao
    Kweon, In-So
    Hua, Xian-Sheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (04) : 381 - 392