Folding of tryptophan mutants of barstar: Evidence for an initial hydrophobic collapse on the folding pathway

被引:40
作者
Nath, U [1 ]
Udgaonkar, JB [1 ]
机构
[1] TIFR CTR, NATL CTR BIOL SCI, BANGALORE 560012, KARNATAKA, INDIA
关键词
D O I
10.1021/bi970426z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The contributions of the three tryptophan residues of barstar to the spectroscopic properties, stability, and folding of the protein have been studied by mutating two of the tryptophans, Trp38 and Trp44, individually as well as together, to phenylalanines, Phe. The three mutant proteins studied are shown to be similar to wt barstar in structure by activity measurements as well as by spectroscopic characterization. Fluorescence energy transfer between the tryptophans as well as quenching by their local structural environments complicates the analysis of the contributions of the individual tryptophans to the fluorescence of the wt protein, but it is demonstrated that Trp53, which is completely buried within the hydrophobic core, makes the dominant contribution to the fluorescence, while the fluorescence of Trp38 is largely quenched in the fully folded protein, GdnHCl- as well as temperature-induced equilibrium unfolding studies, using three different structural probes, indicate that W38FW44F, where both Trp38 and Trp44 have been removed, Follows a two-state unfolding transition and is less stable than the wt barstar. The fluorescence-monitored folding and unfolding kinetics of W38FW44F have been studied in detail. W38FW44F folds 2-fold faster and unfolds 3-fold faster than wt barstar, A large fraction of the total fluorescence change that occurs during folding occurs in a burst phase within 4 ms after commencement of folding. A similar burst phase change in fluorescence, although to a smaller extent, is shown to occur during the folding of wt barstar. The results suggest that a very early folding intermediate accumulates within 4 ms of folding, and that this kinetic intermediate is sufficiently compact that Trp53, which is completely sequestered from solvent in the fully folded protein, is also significantly sequestered from solvent in this intermediate.
引用
收藏
页码:8602 / 8610
页数:9
相关论文
共 56 条
[1]   THERMODYNAMICS OF DENATURATION OF BARSTAR - EVIDENCE FOR COLD DENATURATION AND EVALUATION OF THE INTERACTION WITH GUANIDINE-HYDROCHLORIDE [J].
AGASHE, VR ;
UDGAONKAR, JB .
BIOCHEMISTRY, 1995, 34 (10) :3286-3299
[2]   INITIAL HYDROPHOBIC COLLAPSE IN THE FOLDING OF BARSTAR [J].
AGASHE, VR ;
SHASTRY, MCR ;
UDGAONKAR, JB .
NATURE, 1995, 377 (6551) :754-757
[3]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[4]   Rapid formation of a molten globule intermediate in refolding of alpha-lactalbumin [J].
Arai, M ;
Kuwajima, K .
FOLDING & DESIGN, 1996, 1 (04) :275-287
[5]   PULSED H/D-EXCHANGE STUDIES OF FOLDING INTERMEDIATES [J].
BALDWIN, RL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (01) :84-91
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   PROTEIN-PROTEIN RECOGNITION - CRYSTAL STRUCTURAL-ANALYSIS OF A BARNASE BARSTAR COMPLEX AT 2.0-ANGSTROM RESOLUTION [J].
BUCKLE, AM ;
SCHREIBER, G ;
FERSHT, AR .
BIOCHEMISTRY, 1994, 33 (30) :8878-8889
[8]   A POSSIBLE INITIAL FOLDING INTERMEDIATE - THE C-TERMINAL PROTEOLYTIC DOMAIN OF TRYPTOPHAN SYNTHASE-BETA CHAINS FOLDS IN LESS THAN 4 MILLISECONDS INTO A CONDENSED STATE WITH NON-NATIVE-LIKE SECONDARY STRUCTURE [J].
CHAFFOTTE, AF ;
CADIEUX, C ;
GUILLOU, Y ;
GOLDBERG, ME .
BIOCHEMISTRY, 1992, 31 (17) :4303-4308
[9]   THE RADIUS OF GYRATION OF AN APOMYOGLOBIN FOLDING INTERMEDIATE [J].
ELIEZER, D ;
JENNINGS, PA ;
WRIGHT, PE ;
DONIACH, S ;
HODGSON, KO ;
TSURUTA, H .
SCIENCE, 1995, 270 (5235) :487-488
[10]   EARLY STEPS IN CYTOCHROME-C FOLDING PROBED BY TIME-RESOLVED CIRCULAR-DICHROISM AND FLUORESCENCE SPECTROSCOPY [J].
ELOVE, GA ;
CHAFFOTTE, AF ;
RODER, H ;
GOLDBERG, ME .
BIOCHEMISTRY, 1992, 31 (30) :6876-6883