The role of magnetic anisotropy in the Kondo effect

被引:320
作者
Otte, Alexander F. [1 ,2 ]
Ternes, Markus [1 ]
von Bergmann, Kirsten [1 ,3 ]
Loth, Sebastian [1 ,4 ]
Brune, Harald [1 ,5 ]
Lutz, Christopher P. [1 ]
Hirjibehedin, Cyrus F. [1 ,6 ]
Heinrich, Andreas J. [1 ]
机构
[1] IBM Corp, Div Res, Almaden Res Ctr, San Jose, CA 95120 USA
[2] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands
[3] Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Ecole Polytech Fed Lausanne, Inst Phys Nanostruct, CH-1015 Lausanne, Switzerland
[6] UCL, London Ctr Nanotechnol, Dept Phys & Astron, Dept Chem, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
D O I
10.1038/nphys1072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host(1). Spin S = 1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin(2). Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment(3,4). Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.
引用
收藏
页码:847 / 850
页数:4
相关论文
共 29 条
[1]   EXCHANGE MODEL OF ZERO-BIAS TUNNELING ANOMALIES [J].
APPELBAUM, JA .
PHYSICAL REVIEW, 1967, 154 (03) :633-+
[2]   Incommensurability and atomic structure of c(2x2)N/Cu(100):: A scanning tunneling microscopy study [J].
Choi, T. ;
Ruggiero, C. D. ;
Gupta, J. A. .
PHYSICAL REVIEW B, 2008, 78 (03)
[3]   Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys [J].
Costi, TA .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1504-1507
[4]   A tunable Kondo effect in quantum dots [J].
Cronenwett, SM ;
Oosterkamp, TH ;
Kouwenhoven, LP .
SCIENCE, 1998, 281 (5376) :540-544
[5]   Giant magnetic anisotropy of single cobalt atoms and nanoparticles [J].
Gambardella, P ;
Rusponi, S ;
Veronese, M ;
Dhesi, SS ;
Grazioli, C ;
Dallmeyer, A ;
Cabria, I ;
Zeller, R ;
Dederichs, PH ;
Kern, K ;
Carbone, C ;
Brune, H .
SCIENCE, 2003, 300 (5622) :1130-1133
[6]  
Gatteschi D, 2006, MESOSCOPIC PHYS NANO, P1
[7]   Kondo effect in a single-electron transistor [J].
Goldhaber-Gordon, D ;
Shtrikman, H ;
Mahalu, D ;
Abusch-Magder, D ;
Meirav, U ;
Kastner, MA .
NATURE, 1998, 391 (6663) :156-159
[8]  
Grobis M., 2007, HDB MAGNETISM ADV MA
[9]   Single-atom spin-flip spectroscopy [J].
Heinrich, AJ ;
Gupta, JA ;
Lutz, CP ;
Eigler, DM .
SCIENCE, 2004, 306 (5695) :466-469
[10]  
Hewson A. C., 1997, KONDO PROBLEM HEAVY