Koebe 1/4 theorem and inequalities in N=2 supersymmetric QCD

被引:54
作者
Matone, M
机构
[1] Department of Physics “G. Galilei”, Istituto Nazionale di Fisica Nucleare, University of Padova, Padova, 8-35131, Via Marzolo
来源
PHYSICAL REVIEW D | 1996年 / 53卷 / 12期
关键词
D O I
10.1103/PhysRevD.53.7354
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The critical curve C which Im<(tau)over cap>=0, <(tau)over cap>=a(D)/a, in, determines hyperbolic domains whose Poincare metric can be constructed in terms of a(D) and a. We describe C in a parametric form related to a Schwarzian equation and prove new relations for N=2 supersymmetric SU(2) Yang-Mills theory. In particular, using the Koebe 1/4 theorem and Schwarz's lemma, we obtain inequalities involving u, a(D), and a which seem related to the renormalization group. Furthermore, we obtain a closed form for the prepotential as a function of a. Finally, we show that partial derivative(<(tau)over cap>) [tr phi(2)]<((tau)over cap>)=1/8 pi ib(1)[phi](<(tau)over cap>)(2), where b(1) is the one-loop coefficient of the beta function.
引用
收藏
页码:7354 / 7358
页数:5
相关论文
共 27 条
[1]  
ARGYRES P, UKHEP95507
[2]  
ARGYRES P, IASSNSHEP94103
[3]  
BONELLI G, IN PRESS PHYS REV LE
[4]  
Bowen R., 1979, PUBL MATH I HAUTES E, P11, DOI [DOI 10.1007/BF02684767, 10.1007/BF02684767]
[5]   INFRARED BEHAVIOR AT NEGATIVE CURVATURE [J].
CALLAN, CG ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :366-386
[6]   ON THE GEOMETRY OF MODULI SPACE OF VACUA IN N=2 SUPERSYMMETRIC YANG-MILLS THEORY [J].
CERESOLE, A ;
DAURIA, R ;
FERRARA, S .
PHYSICS LETTERS B, 1994, 339 (1-2) :71-76
[7]  
EGUCHI T, UT728
[8]   Some comments on N=2 supersymmetric Yang-Mills [J].
Fayyazuddin, A .
MODERN PHYSICS LETTERS A, 1995, 10 (35) :2703-2708
[9]  
Ford L.R., 1951, Automorphic Functions, V2nd
[10]   REMARKS ON A PAPER BY NEHARI,ZEEV [J].
HILLE, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (06) :552-553