There are no nice interfaces in (2+1)-dimensional SOS models in random media

被引:22
作者
Bovier, A [1 ]
Kulske, C [1 ]
机构
[1] UNIV RENNES 1,INST RECH MATH RENNES,F-35042 RENNES,FRANCE
关键词
disordered systems; interfaces; SOS model;
D O I
10.1007/BF02183747
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that in dimension d less than or equal to 2 translation-covariant Gibbs states describing rigid interfaces in a disordered solid-on-solid (SOS) cannot exist for any value of the temperature, in contrast to the situation in d greater than or equal to 3. The proof relies on an adaptation of a theorem of Aizenman and Wehr.
引用
收藏
页码:751 / 759
页数:9
相关论文
共 6 条
[1]   ROUNDING EFFECTS OF QUENCHED RANDOMNESS ON 1ST-ORDER PHASE-TRANSITIONS [J].
AIZENMAN, M ;
WEHR, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) :489-528
[2]   A RIGOROUS RENORMALIZATION-GROUP METHOD FOR INTERFACES IN RANDOM-MEDIA [J].
BOVIER, A ;
KULSKE, C .
REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (03) :413-496
[3]  
Georgii H.-O., 1988, Gibbs Measures and Phase Transitions
[4]   RANDOM-FIELD INSTABILITY OF ORDERED STATE OF CONTINUOUS SYMMETRY [J].
IMRY, Y ;
MA, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (21) :1399-1401
[5]  
KULSKE C, 1994, P C ADV TOP APPL MAT
[6]   ENTROPY, LIMIT-THEOREMS, AND VARIATIONAL-PRINCIPLES FOR DISORDERED LATTICE SYSTEMS [J].
SEPPALAINEN, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (02) :233-277