Chaotic signatures in the spectrum of a quantum double well

被引:9
作者
Berkovits, R
Ashkenazy, Y
Horwitz, LP
Levitan, J
机构
[1] JACK & PEARL RESNICK INST ADV TECHNOL, IL-52900 RAMAT GAN, ISRAEL
[2] TEL AVIV UNIV, RAYMOND & BEVERLY SACKLER FAC EXACT SCI, SCH PHYS, RAMAT AVIV, ISRAEL
[3] COLL JUDEA & SAMARIA, RES INST, IL-44837 ARIEL, ISRAEL
关键词
quantum chaos; quantum double well; FLUCTUATIONS; DYNAMICS;
D O I
10.1016/S0378-4371(97)00009-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectrum of a double well constructed of a square barrier embedded man infinite well is analyzed. Level statistics for levels slightly above the barrier show signs of Wigner statistics usually associated with quantum chaos. The correspondence with Wigner statistics improves when an ensemble of systems with slightly different barrier heights is taken, possibly reflecting an adiabatic time-dependent modulation of the barrier.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 9 条
[1]   CHAOTICLIKE BEHAVIOR IN A QUANTUM SYSTEM WITHOUT CLASSICAL COUNTERPART [J].
ASHKENAZY, Y ;
HORWITZ, LP ;
LEVITAN, J ;
LEWKOWICZ, M ;
ROTHSCHILD, Y .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1070-1073
[2]   INADEQUACY OF EHRENFEST THEOREM TO CHARACTERIZE THE CLASSICAL REGIME [J].
BALLENTINE, LE ;
YANG, YM ;
ZIBIN, JP .
PHYSICAL REVIEW A, 1994, 50 (04) :2854-2859
[3]  
GUTZWILLER OMC, 1990, CHAOS CLASSICAL QUAN
[4]   LIMITS OF LEVEL-SPACING FLUCTUATIONS AS A CHARACTERIZATION OF QUANTUM CHAOS [J].
LEWENKOPF, CH .
PHYSICAL REVIEW A, 1990, 42 (04) :2431-2433
[5]   ON THE LOW-FREQUENCY AND HIGH-FREQUENCY LIMIT OF QUANTUM SCATTERING BY TIME-DEPENDENT POTENTIALS [J].
MARTIN, PA ;
DEBIANCHI, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :2403-2427
[6]  
Mehta M. L., 1991, RANDOM MATRICES
[7]   SEMIQUANTAL DYNAMICS OF FLUCTUATIONS - OSTENSIBLE QUANTUM CHAOS [J].
PATTANAYAK, AK ;
SCHIEVE, WC .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2855-2858
[8]   GAUSSIAN WAVE-PACKET DYNAMICS - SEMIQUANTAL AND SEMICLASSICAL PHASE-SPACE FORMALISM [J].
PATTANAYAK, AK ;
SCHIEVE, WC .
PHYSICAL REVIEW E, 1994, 50 (05) :3601-3614
[9]  
Reichl L.E., 1992, TRANSITION CHAOS CON