Discrete surface modelling using partial differential equations

被引:78
作者
Xu, GL
Pan, Q
Bajaj, CL [1 ]
机构
[1] Univ Texas, Dept Comp Sci, Ctr Computat Visualizat, Austin, TX 78712 USA
[2] Univ Texas, Dept Comp Sci, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Inst Comp Math, Beijing 100080, Peoples R China
关键词
free-form surface fitting; blending; N-sided hole; differential equations;
D O I
10.1016/j.cagd.2005.05.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 145
页数:21
相关论文
共 55 条
[1]   HIGHER-ORDER INTERPOLATION AND LEAST-SQUARES APPROXIMATION USING IMPLICIT ALGEBRAIC-SURFACES [J].
BAJAJ, C ;
IHM, I ;
WARREN, J .
ACM TRANSACTIONS ON GRAPHICS, 1993, 12 (04) :327-347
[2]  
BAJAJ C, 2003, 0310 ICES U TEX AUST
[3]  
BAJAJ C, 1994, ADV COMPUTATIONAL MA, P73
[4]   ALGEBRAIC SURFACE DESIGN WITH HERMITE INTERPOLATION [J].
BAJAJ, CL ;
IHM, I .
ACM TRANSACTIONS ON GRAPHICS, 1992, 11 (01) :61-91
[5]   Anisotropic diffusion of surfaces and functions on surfaces [J].
Bajaj, CL ;
Xu, GL .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (01) :4-32
[6]  
BANSCH E, 2002, P INT C FREE BOUND P
[7]  
Bertalmio M., 2000, 0043 CAM UCLA MATH D
[8]  
Bloomfield J., 1990, AUSTR J SCI MED SPOR, V22, P4
[9]   GENERATING BLEND SURFACES USING PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLOOR, MIG ;
WILSON, MJ .
COMPUTER-AIDED DESIGN, 1989, 21 (03) :165-171
[10]   A level-set approach for the metamorphosis of solid models [J].
Breen, DE ;
Whitaker, RT .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2001, 7 (02) :173-192