Parameter evaluation from time sequences using chaos synchronization

被引:48
作者
Sakaguchi, H [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Fukuoka 8168580, Japan
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 02期
关键词
D O I
10.1103/PhysRevE.65.027201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Unknown parameters in nonlinear equations are estimated from chaotic time sequences using chaos synchronization. The method is based on a random optimization method. The parameters are randomly searched for in a sequential manner as the degree of the chaos synchronization is increased. The method is applied for the parameter evaluation in the Lorenz equation and the Lang-Kobayashi model for the chaotic semiconductor laser.
引用
收藏
页码:1 / 027201
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1986, EXPLOR MICROSTRUCT C
[2]   Fitting partial differential equations to space-time dynamics [J].
Bär, M ;
Hegger, R ;
Kantz, H .
PHYSICAL REVIEW E, 1999, 59 (01) :337-342
[3]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[4]  
Kantz H, 1997, Nonlinear Time Series Analysis
[5]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[6]  
KRAUSKOPF B, 2000, AIP C P, V548
[7]   EXTERNAL OPTICAL FEEDBACK EFFECTS ON SEMICONDUCTOR INJECTION-LASER PROPERTIES [J].
LANG, R ;
KOBAYASHI, K .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1980, 16 (03) :347-355
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]  
MATYAS J, 1965, AUTOMAT REM CONTR+, V26, P244