Functional domain analysis of the yeast ABC transporter Ycf1p by site-directed mutagenesis

被引:23
作者
Falcón-Pérez, JM
Mazón, MJ
Molano, J
Eraso, P
机构
[1] Univ Autonoma Madrid, CSIC, Inst Invest Biomed Alberto Sols, Madrid 28029, Spain
[2] Hosp La Paz, Unidad Genet Mol, Serv Bioquim, Madrid 28046, Spain
关键词
D O I
10.1074/jbc.274.33.23584
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The yeast cadmium factor (Ycf1p) is a vacuolar protein involved in resistance to Cd2+ and to exogenous glutathione S-conjugate precursors in yeast. It belongs to the superfamily of ATP binding cassette transporters, which includes the human cystic fibrosis transmembrane conductance regulator and the multidrug resistance-associated protein. To examine the functional significance of conserved amino acid residues in Ycf1p, we performed an extensive mutational analysis. Twenty-two single amino acid substitutions or deletions were generated by site-directed mutagenesis in the nucleotide binding domains, the proposed regulatory domain, and the fourth cytoplasmic loop. Mutants were analyzed phenotypically by measuring their ability to grow in the presence of Cd2+. Expression and subcellular localization of the mutant proteins were examined by immunodetection in vacuolar membranes. For functional characterization of the Ycf1p variants, the kinetic parameters of glutathione S-conjugated leukotriene C-4 transport were measured. Our analysis shows that residues Ile(711), Leu(712), Phe(713), Glu(927), and Gly(1413) are essential for Ycf1p expression. Five other amino acids, Gly(663), Gly(756), Asp(777), Gly(1306), and Gly(1311), are critical for Ycf1p function, and two residues, Glu(709) and Asp(821) are unnecessary for Ycf1p biogenesis and function. We also identify several regulatory domain mutants in which Cd2+ tolerance of the mutant strain and transport activity of the protein are dissociated.
引用
收藏
页码:23584 / 23590
页数:7
相关论文
共 57 条
[1]   INTERNAL AMINO-ACID SEQUENCE-ANALYSIS OF PROTEINS SEPARATED BY ONE-DIMENSIONAL OR TWO-DIMENSIONAL GEL-ELECTROPHORESIS AFTER INSITU PROTEASE DIGESTION ON NITROCELLULOSE [J].
AEBERSOLD, RH ;
LEAVITT, J ;
SAAVEDRA, RA ;
HOOD, LE ;
KENT, SBH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (20) :6970-6974
[2]  
AKERBOOM TPM, 1991, J BIOL CHEM, V266, P13147
[3]  
[Anonymous], 1989, Molecular Cloning: A Laboratory Manual
[4]   Characterization of the human multidrug resistance protein containing mutations in the ATP-binding cassette signature region [J].
Bakos, E ;
Klein, I ;
Welker, E ;
Szabo, K ;
Muller, M ;
Sarkadi, B ;
Varadi, A .
BIOCHEMICAL JOURNAL, 1997, 323 :777-783
[5]   GENETICS AND BIOCHEMISTRY OF YEAST MULTIDRUG-RESISTANCE [J].
BALZI, E ;
GOFFEAU, A .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :152-162
[6]   MUTATIONAL ANALYSIS OF THE YEAST A-FACTOR TRANSPORTER STE6, A MEMBER OF THE ATP BINDING CASSETTE (ABC) PROTEIN SUPERFAMILY [J].
BERKOWER, C ;
MICHAELIS, S .
EMBO JOURNAL, 1991, 10 (12) :3777-3785
[7]   Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology:: Structural model of the nucleotide binding domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) [J].
Bianchet, MA ;
Ko, YH ;
Amzel, LM ;
Pedersen, PL .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1997, 29 (05) :503-524
[8]   A RAPID, SENSITIVE METHOD FOR DETECTION OF ALKALINE-PHOSPHATASE CONJUGATED ANTI-ANTIBODY ON WESTERN BLOTS [J].
BLAKE, MS ;
JOHNSTON, KH ;
RUSSELLJONES, GJ ;
GOTSCHLICH, EC .
ANALYTICAL BIOCHEMISTRY, 1984, 136 (01) :175-179
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   SUPERPOLYLINKERS IN CLONING AND EXPRESSION VECTORS [J].
BROSIUS, J .
DNA-A JOURNAL OF MOLECULAR & CELLULAR BIOLOGY, 1989, 8 (10) :759-777