The discrete-time GI/Geo/1 queue with multiple vacations

被引:56
作者
Tian, NS
Zhang, ZG [1 ]
机构
[1] Western Washington Univ, Coll Business & Econ, Dept Finance Mkt & Decis Sci, Bellingham, WA 98225 USA
[2] Yanshan Univ, Dept Math, Qinhuangdao 066004, Peoples R China
[3] Simon Fraser Univ, Fac Business Adm, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
discrete-time; GI/Geo/1; queue; vacation model; matrix geometric solutions; stochastic decomposition;
D O I
10.1023/A:1014711529740
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.
引用
收藏
页码:283 / 294
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1993, QUEUEING ANAL DISCRE
[2]  
Bruneel H., 1993, Discrete-Time Models for Communication Systems Including ATM
[3]  
Doshi B. T., 1986, Queueing Systems Theory and Applications, V1, P29, DOI 10.1007/BF01149327
[4]  
DUKHOVNY A, 1997, QUEUEING SYST, V5, P331
[5]  
HUNTER J, 1993, MATH TECHNIQUES APPL, V2
[6]  
KOBAYASHI H, 1977, IEEE T COMMUN, V25, P1
[7]   DISCRETE-TIME QUEUING THEORY [J].
MEISLING, T .
OPERATIONS RESEARCH, 1958, 6 (01) :96-105
[8]  
Neuts M.F., 1981, Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach
[9]  
Takagi, 1991, QUEUEING ANAL FDN PE
[10]  
TIAN N, 1999, QUEUEING SYST, V5, P331