Gridding-based direct Fourier inversion of the three-dimensional ray transform

被引:51
作者
Penczek, PA
Renka, R
Schomberg, H
机构
[1] Univ Texas, Sch Med, Dept Biochem & Mol Biol, Houston, TX 77030 USA
[2] Univ N Texas, Dept Comp Sci, Denton, TX 76203 USA
[3] Philips Res Hamburg, D-22335 Hamburg, Germany
关键词
D O I
10.1364/JOSAA.21.000499
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a fast and accurate direct Fourier method for reconstructing a function f of three variables from a. number of its parallel beam projections. The main application of our method is in single particle analysis, where the goal is to reconstruct the mass density of a biological macromolecule. Typically, the number of projections is extremely large, and each projection is extremely noisy. The projection directions are random and initially unknown. However, it is possible to determine both the directions and f by an iterative procedure; during each stage of the iteration, one has to solve a reconstruction problem of the type considered here. Our reconstruction algorithm is distinguished from other direct Fourier methods by the use of gridding techniques that provide an efficient means to compute a uniformly sampled version of a function g from a nominiformly sampled version of Fg, the Fourier transform of g, or vice versa. We apply the two-dimensional reverse gridding method to each available projection of f, the function to be reconstructed, in order to obtain Ff on a special sphericalgrid. Then we use the three-dimensional gridding method to reconstruct f from this sampled version of Ff. This stage requires a proper weighting of the samples of Ff to compensate for their nonuniform distribution. We use a fast method for computing appropriate weights that exploits the special properties of the spherical sampling grid for Ff and involves the computation of a Voronoi diagram on the unit sphere. We demonstrate the excellent speed and accuracy of our method by using simulated data. (C) 2004 Optical Society of America.
引用
收藏
页码:499 / 509
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 1996, 3 DIMENSIONAL ELECT
[2]  
[Anonymous], 2001, SIAM monographs on mathematical modeling and computation
[3]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[4]  
BROWN WN, 1975, METHODS COMPUTATIONA, P131
[5]  
Chandra R., 2000, Parallel Programming in OpenMP
[6]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA [J].
DUTT, A ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1368-1393
[7]   SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields [J].
Frank, J ;
Radermacher, M ;
Penczek, P ;
Zhu, J ;
Li, YH ;
Ladjadj, M ;
Leith, A .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :190-199
[8]   Solution structure of the E. coli 70S ribosome at 11.5 Å resolution [J].
Gabashvili, IS ;
Agrawal, RK ;
Spahn, CMT ;
Grassucci, RA ;
Svergun, DI ;
Frank, J ;
Penczek, P .
CELL, 2000, 100 (05) :537-549
[9]   Three-dimensional structure of bovine NADH:Ubiquinone oxidoreductase (Complex I) at 22 Å in ice [J].
Grigorieff, N .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (05) :1033-1046
[10]  
HARAUZ G, 1986, OPTIK, V73, P146