Fluorescence techniques as suitable methods to discriminate wheat genotypes under drought and high temperature condition

被引:4
作者
Balota, M [1 ]
Sowinska, M [1 ]
Buschmann, C [1 ]
Lichtenthaler, HK [1 ]
Heisel, F [1 ]
Babani, F [1 ]
机构
[1] Cereals & Ind Crops Inst, Fundulea 8264, Romania
来源
LASER RADAR TECHNOLOGY AND APPLICATIONS IV | 1999年 / 3707卷
关键词
wheat drought and high temperature stress; chlorophyll fluorescence; LIF imaging system;
D O I
10.1117/12.351334
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The chlorophyll fluorescence parameters Fv/Fo and Fd/Fs (=Rfd690), related to the quantum conversion capacity at dark-adapted and light-adapted state of the photosynthetic apparatus respectively, have been evaluated as possible indicators of drought and heat tolerance in winter wheat. The measurements were carried out on primary leaves of 8-day old seedlings. Rfd values decreased in 8 days by 20% (p less than or equal to 0.01) only under severe water limitation and for the drought susceptible genotype. The photosynthetic apparatus was more sensitive to high temperature with both ratios, Fv/Fo and Rfd690, showing mean decrease (p less than or equal to 0.001) of 27% and 43%, respectively, in 5 days at 35 degrees C. The susceptible cultivars decreased of up to 42% and 65% and the drought and heat tolerant genotypes only 7% and 12% for Fv/Fo and Rfd690, respectively. The Fv/Fo ratio correlated well (p less than or equal to 0.05 and p less than or equal to 0.01) with seedling responses to oxidative and osmotic stresses. The Rfd690-values correlated better with all physiological parameters considered and with the deviations from linear regression of drought susceptibility index DSI (r = -0.84, p less than or equal to 0.01) on yield potential showing the highest potential to predict drought and heat tolerance, In addition the blue, green, red and far-red fluorescence have been determined using a laser-induced-fluorescence imaging system in entire seedlings of wheat and triticale grown under optimal laboratory conditions. The ratios F690/F740 and F440/F520 correlated well (p less than or equal to 0.05) with the total chlorophyll content (detected by the SPAD-chlorophyll-meter) and the specific leaf dry weight (SLDW) showing the potential of the both fluorescence ratios to discriminate genetic differences between cultivars for these leaf structural sources of water use efficiency (WUE) improvement.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 31 条
[1]  
Araus JL, 1997, PLANT PHYSIOL BIOCH, V35, P533
[2]   RELATIONSHIPS BETWEEN PHOTOSYNTHETIC CAPACITY AND LEAF STRUCTURE IN SEVERAL SHADE PLANTS [J].
ARAUS, JL ;
ALEGRE, L ;
TAPIA, L ;
CALAFELL, R ;
SERRET, MD .
AMERICAN JOURNAL OF BOTANY, 1986, 73 (12) :1760-1770
[3]   RELATIONSHIP BETWEEN LEAF STRUCTURE AND GAS-EXCHANGE IN WHEAT LEAVES AT DIFFERENT INSERTION LEVELS [J].
ARAUS, JL ;
ALEGRE, L ;
TAPIA, L ;
CALAFELL, R .
JOURNAL OF EXPERIMENTAL BOTANY, 1986, 37 (182) :1323-1333
[4]   Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios [J].
Babani, F ;
Lichtenthaler, HK .
JOURNAL OF PLANT PHYSIOLOGY, 1996, 148 (05) :555-566
[5]  
BALOTA M, IN PRESS CER RES COM
[6]  
BALOTA M, 1994, ROMANIAN AGR RES, V1, P37
[7]   INCREASE OF THE CHLOROPHYLL FLUORESCENCE RATIO F690/F735 DURING THE AUTUMNAL CHLOROPHYLL BREAKDOWN [J].
DAMBROSIO, N ;
SZABO, K ;
LICHTENTHALER, HK .
RADIATION AND ENVIRONMENTAL BIOPHYSICS, 1992, 31 (01) :51-62
[8]   DROUGHT RESISTANCE IN SPRING WHEAT CULTIVARS .1. GRAIN-YIELD RESPONSES [J].
FISCHER, RA ;
MAURER, R .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1978, 29 (05) :897-912
[9]   The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance [J].
Flagella, Z ;
Campanile, RG ;
Ronga, G ;
Stoppelli, MC ;
Pastore, D ;
DeCaro, A ;
DiFonzo, N .
PLANT SCIENCE, 1996, 118 (02) :127-133
[10]   THE RELATIONSHIP BETWEEN THE QUANTUM YIELD OF PHOTOSYNTHETIC ELECTRON-TRANSPORT AND QUENCHING OF CHLOROPHYLL FLUORESCENCE [J].
GENTY, B ;
BRIANTAIS, JM ;
BAKER, NR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 990 (01) :87-92