Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2

被引:1164
作者
Daneshvar, N [1 ]
Salari, D
Khataee, AR
机构
[1] Univ Tabriz, Fac Chem, Dept Appl Chem, Water & Wastewater Treatment Res Lab, Tabriz, Iran
[2] Univ Tabriz, Fac Chem, Dept Appl Chem, Lab Petr Technol, Tabriz, Iran
关键词
advanced oxidation processes; heterogeneous photocatalysis; azo dyes; acid red 14; zinc oxide;
D O I
10.1016/s1010-6030(03)00378-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The degradation of acid red 14 (AR14), commonly used as a textile dye, can be photocatalysed by ZnO. Using advanced oxidation processes (AOPs), zinc oxide appears to be a suitable alternative to TiO2 for water treatment. In this study, a detailed investigation of photocatalytic degradation of acid red 14 is presented. Photodegradation efficiency was small when the photolysis was carried out in the absence of ZnO and it was also negligible in the absence of UV light. The semi-log plot of dye concentration versus time was linear, suggesting first order reaction (K = 0.0548 min(-1)). The effects of some parameters such as pH, amount of photocatalyst, hydrogen peroxide and ethanol concentration were also examined. The addition of proper amount of hydrogen peroxide improved the decolorization, while the excess hydrogen peroxide could quenched the formation of hydroxyl radicals ((OH)-O-.). As our results indicated that ethanol inhibited the photodegradation of dye, we concluded from the inhibitive effect of ethanol that hydroxyl radicals played a significant role in the photodegradation of dye. This should not undermine direct oxidation caused by positive holes. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 28 条
[1]   The photo-fenton reaction and the TiO2/UV process for waste water treatment -: novel developments [J].
Bauer, R ;
Waldner, G ;
Fallmann, H ;
Hager, S ;
Klare, M ;
Krutzler, T ;
Malato, S ;
Maletzky, P .
CATALYSIS TODAY, 1999, 53 (01) :131-144
[2]   UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters [J].
Cater, SR ;
Stefan, MI ;
Bolton, JR ;
Safarzadeh-Amiri, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (04) :659-662
[3]  
Daneshvar N, 2002, IRAN J CHEM CHEM ENG, V21, P55
[4]   Decolorization of orange II by electrocoagulation method [J].
Daneshvar, N ;
Ashassi-Sorkhabi, H ;
Tizpar, A .
SEPARATION AND PURIFICATION TECHNOLOGY, 2003, 31 (02) :153-162
[5]   Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters [J].
Daneshvar, N ;
Salari, D ;
Khataee, AR .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2003, 157 (01) :111-116
[6]   Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight [J].
Dindar, B ;
Içli, S .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2001, 140 (03) :263-268
[7]   Factorial experimental design of Orange II photocatalytic discolouration [J].
Fernández, J ;
Kiwi, J ;
Lizama, C ;
Freer, J ;
Baeza, J ;
Mansilla, HD .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 151 (1-3) :213-219
[8]   HETEROGENEOUS PHOTOCATALYSIS [J].
FOX, MA ;
DULAY, MT .
CHEMICAL REVIEWS, 1993, 93 (01) :341-357
[9]   Photooxidation of the phenylazonaphthol AO20 on TIO2:: kinetic and mechanistic investigations [J].
Galindo, C ;
Jacques, P ;
Kalt, A .
CHEMOSPHERE, 2001, 45 (6-7) :997-1005
[10]   Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes:: UV/H2O2 UV/TiO2 and VIS/TiO2 -: Comparative mechanistic and kinetic investigations [J].
Galindo, C ;
Jacques, P ;
Kalt, A .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2000, 130 (01) :35-47