The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites

被引:159
作者
Herbert, TP [1 ]
Tee, AR [1 ]
Proud, CG [1 ]
机构
[1] Univ Dundee, Sch Life Sci, Div Mol Physiol, Dundee DD1 5EH, Scotland
关键词
D O I
10.1074/jbc.M110367200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent stimulator of Erk, leads to the phosphorylation of 4E-BP1 and its dissociation from eIF4E. In contrast to agonists such as insulin, this occurs independently of PKB activation. In this report, we investigate the mechanism by which TPA regulates 4E-BP1 phosphorylation. Treatment of HEK293 cells with TPA was found to result in the phosphorylation of 4E-BP1 at Ser(64), Thr(69), and Thr(36/45). The TPA-stimulated phosphorylation of all these sites is sensitive to inhibitors of MEK and to the inhibitor of mTOR, rapamycin, indicating that inputs from both mTOR and MEK are required for the regulation of 4E-BP1 phosphorylation by TPA. Indeed, evidence is presented that mTOR may initially be required for the phosphorylation of Thr(45) in a priming step, which is necessary for the subsequent phosphorylation of Ser(64) and Thr(69) through an Erk-dependent pathway. Overexpression of constitutively active MEK in HEK293 cells resulted both in the phosphorylation of 4E-BP1 at Ser(64) and Thr(36/45) and its release from eIF4E. In this case, the phosphorylation of these sites was also blocked by inhibitors of MEK or by rapamycin. In conclusion, the Erk pathway, via mechanisms also requiring mTOR, regulates the phosphorylation of multiple sites in 4E-BP1 in vivo and this is sufficient for the release of 4E-BP1 from eIF4E.
引用
收藏
页码:11591 / 11596
页数:6
相关论文
共 41 条
  • [1] PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO
    ALESSI, DR
    CUENDA, A
    COHEN, P
    DUDLEY, DT
    SALTIEL, AR
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) : 27489 - 27494
  • [2] Mechanism of activation of protein kinase B by insulin and IGF-1
    Alessi, DR
    Andjelkovic, M
    Caudwell, B
    Cron, P
    Morrice, N
    Cohen, P
    Hemmings, BA
    [J]. EMBO JOURNAL, 1996, 15 (23) : 6541 - 6551
  • [3] Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation
    Beretta, L
    Gingras, AC
    Svitkin, YV
    Hall, MN
    Sonenberg, N
    [J]. EMBO JOURNAL, 1996, 15 (03) : 658 - 664
  • [4] Bhandari BK, 2001, KIDNEY INT, V59, P866
  • [5] The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus
    Brunn, GJ
    Fadden, P
    Haystead, TAJ
    Lawrence, JC
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) : 32547 - 32550
  • [6] Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin
    Brunn, GJ
    Hudson, CC
    Sekulic, A
    Williams, JM
    Hosoi, H
    Houghton, PJ
    Lawrence, JC
    Abraham, RT
    [J]. SCIENCE, 1997, 277 (5322) : 99 - 101
  • [7] Specificity and mechanism of action of some commonly used protein kinase inhibitors
    Davies, SP
    Reddy, H
    Caivano, M
    Cohen, P
    [J]. BIOCHEMICAL JOURNAL, 2000, 351 (351) : 95 - 105
  • [8] Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells
    Diggle, TA
    Moule, SK
    Avison, MB
    Flynn, A
    Foulstone, EJ
    Proud, CG
    Denton, RM
    [J]. BIOCHEMICAL JOURNAL, 1996, 316 : 447 - 453
  • [9] A SYNTHETIC INHIBITOR OF THE MITOGEN-ACTIVATED PROTEIN-KINASE CASCADE
    DUDLEY, DT
    PANG, L
    DECKER, SJ
    BRIDGES, AJ
    SALTIEL, AR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) : 7686 - 7689
  • [10] Fadden P, 1997, J BIOL CHEM, V272, P10240