Stan: A Probabilistic Programming Language

被引:4617
作者
Carpenter, Bob [1 ]
Gelman, Andrew [1 ]
Hoffman, Matthew D. [2 ]
Lee, Daniel [1 ]
Goodrich, Ben [1 ]
Betancourt, Michael [1 ]
Brubaker, Marcus A. [3 ]
Guo, Jiqiang [4 ]
Li, Peter [1 ]
Riddell, Allen [5 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Adobe Creat Technol Lab, San Francisco, CA USA
[3] York Univ, N York, ON M3J 1P3, Canada
[4] NPD Grp, Port Washington, NY USA
[5] Indiana Univ, Bloomington, IN 47405 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 76卷 / 01期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
probabilistic program; Bayesian inference; algorithmic differentiation; Stan;
D O I
10.18637/jss.v076.i01
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 32 条
[1]  
Betancourt M, 2016, ARXIV160100225STATME
[2]  
Brooks S, 2011, CH CRC HANDB MOD STA, P1, DOI 10.1201/b10905
[3]  
Carpenter B, 2015, ARXIV150907164CSMS
[4]  
Chacon S, 2009, PRO GIT, DOI [10.1007/978-1-4302-1834-0, DOI 10.1007/978-1-4302-1834-0]
[5]  
Cohen S. D., 1996, Computers in Physics, V10, P138
[6]  
Driessen V., 2010, A successful Git branching model
[7]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[8]  
Efron B., 2010, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction, DOI 10.1017/CBO9780511761362
[9]  
Gelman A., 2013, Bayesian Data Analysis, Vthird
[10]  
Gelman A., 1992, Statistical Science, V7, P457, DOI [DOI 10.1214/SS/1177011136, 10.1214/ss/1177011136]