The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis

被引:47
作者
Somerharju, Pentti [1 ]
Virtanen, Jorma A. [2 ]
Cheng, Kwan H. [3 ]
Hermansson, Martin [1 ]
机构
[1] Univ Helsinki, Inst Biomed, Dept Med Biochem, FIN-00014 Helsinki, Finland
[2] Univ Jyvaskyla, NanoSci Ctr, Dept Chem, SF-40351 Jyvaskyla, Finland
[3] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2009年 / 1788卷 / 01期
关键词
Cholesterol; Distribution; Domain; Erythrocyte; Model; Molecular dynamics; Phospholipase; Phospholipid; CTP-PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE; SATURATED FATTY-ACIDS; PHOSPHATIDYLCHOLINE BILAYERS; REGULAR DISTRIBUTION; CHOLESTEROL SUPERLATTICES; PHASE-TRANSITIONS; DOMAIN FORMATION; CONDENSED COMPLEXES; MAXIMUM SOLUBILITY; BINARY-MIXTURES;
D O I
10.1016/j.bbamem.2008.10.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 23
页数:12
相关论文
共 122 条
[1]   Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules [J].
Alanko, SMK ;
Halling, KK ;
Maunula, S ;
Slotte, JP ;
Ramstedt, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2005, 1715 (02) :111-121
[2]   Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers [J].
Ali, Md Rejwan ;
Cheng, Kwan Hon ;
Huang, Juyang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (13) :5372-5377
[3]  
AMIRMOAZAMI O, 2008, J BIOL CHEM
[4]   A thermodynamic model for extended complexes of cholesterol and phospholipid [J].
Anderson, TG ;
McConnell, HM .
BIOPHYSICAL JOURNAL, 2002, 83 (04) :2039-2052
[5]   Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress [J].
Attard, GS ;
Templer, RH ;
Smith, WS ;
Hunt, AN ;
Jackowski, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9032-9036
[6]   SURFACE AREA OF HUMAN ERYTHROCYTE LIPIDS - REINVESTIGATION OF EXPERIMENTS ON PLASMA MEMBRANE [J].
BAR, RS ;
DEAMER, DW ;
CORNWELL, DG .
SCIENCE, 1966, 153 (3739) :1010-&
[7]   SPIN-LABELING STUDY OF PHOSPHATIDYLCHOLINE-CARDIOLIPIN BINARY-MIXTURES [J].
BERCLAZ, T ;
GEOFFROY, M .
BIOCHEMISTRY, 1984, 23 (18) :4033-4037
[8]   PHASE-EQUILIBRIA IN BINARY-MIXTURES OF DIMYRISTOYLPHOSPHATIDYLCHOLINE AND CARDIOLIPIN [J].
BERCLAZ, T ;
MCCONNELL, HM .
BIOCHEMISTRY, 1981, 20 (23) :6635-6640
[9]   Relationship between erythrocyte membrane phase properties and susceptibility to secretory phospholipase A2 [J].
Best, KB ;
Ohran, AJ ;
Hawes, AC ;
Hazlett, TL ;
Gratton, E ;
Judd, AM ;
Bell, JD .
BIOCHEMISTRY, 2002, 41 (47) :13982-13988
[10]   CALORIMETRIC STUDY OF LIPID PHASE-TRANSITIONS IN AQUEOUS DISPERSIONS OF PHOSPHORYLCHOLINE-PHOSPHORYLETHANOLAMINE MIXTURES [J].
BLUME, A ;
ACKERMAN.T .
FEBS LETTERS, 1974, 43 (01) :71-74