Regulation of microtubule dynamics in 3T3 fibroblasts by Rho family GTPases

被引:26
作者
Grigoriev, I
Borisy, G
Vorobjev, I
机构
[1] Moscow MV Lomonosov State Univ, Fac Biol, Dept Cell Biol & Histol, Moscow 119992, Russia
[2] Northwestern Univ, Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[3] Moscow MV Lomonosov State Univ, Belozersky Inst, Cell Motil Lab, Moscow 119992, Russia
来源
CELL MOTILITY AND THE CYTOSKELETON | 2006年 / 63卷 / 01期
关键词
Cdc42; Rac1; RhoA; dynamic instability; microtubule plus ends; microtubule minus ends;
D O I
10.1002/cm.20107
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To get insight into the action of Rho GTPases on the microtubule system we investigated the effects of Cdc42, Rac1, and RhoA on the dynamics of microtubules in Swiss 3T3 fibroblasts. In control cells microtubule ends were dynamic: plus ends frequently switched between growth, shortening and pauses; the growth phase predominated over shortening. Free minus ends of microtubules depolymerized rapidly and never grew. Free microtubules were short-lived, and the microtubule network was organized into a radial array. In serum-starved cells microtubule ends became more stable: although Plus ends still transited between growth and shortening, polymerization and depolymerization excursions became shorter and balanced each other. Microtubule minus ends were also stabilized. Consequently lifespan of free microtubules increased and microtubule, array changed its radial pattern into a random one. Activation of Cdc42 and Rac1 in serum-starved cells promoted dynamic behavior of microtubule plus and minus ends, while inhibition of these GTPases in serum-grown cells suppressed microtubule dynamics and mimicked all effects of serum starvation. Activation of RhoA in serum-grown cells had effects similar to Cdc42/Rac1 inactivation: it suppressed the dynamics of plus and minus ends, reduced the length of growth and shrinking episodes, and disrupted the radial organization of microtubules. However, in contrast to Cdc42 and Rac1 inactivation, active RhoA had no effect on the balance between microtubule growth and shortening. We conclude that Cdc42 and Rac1 have similar stimulating effects on microtubule dynamics while RhoA acts in an opposite way.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 45 条
[1]  
Berg H. C., 1993, RANDOM WALKS BIOL
[2]   MEMBRANE INSERTION AT THE LEADING-EDGE OF MOTILE FIBROBLASTS [J].
BERGMANN, JE ;
KUPFER, A ;
SINGER, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (05) :1367-1371
[3]   A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization [J].
Cau, J ;
Faure, S ;
Comps, M ;
Delsert, C ;
Morin, N .
JOURNAL OF CELL BIOLOGY, 2001, 155 (06) :1029-1042
[4]   Cadherin-mediated regulation of microtubule dynamics [J].
Chausovsky, A ;
Bershadsky, AD ;
Borisy, GG .
NATURE CELL BIOLOGY, 2000, 2 (11) :797-804
[5]   Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid [J].
Cook, TA ;
Nagasaki, T ;
Gundersen, GG .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :175-185
[6]   Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: Implications for the generation of motile force [J].
Cramer, LP ;
Siebert, M ;
Mitchison, TJ .
JOURNAL OF CELL BIOLOGY, 1997, 136 (06) :1287-1305
[7]  
Danowski BA, 1998, CELL MOTIL CYTOSKEL, V40, P1
[8]   Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16 [J].
Daub, H ;
Gevaert, K ;
Vandekerckhove, J ;
Sobel, A ;
Hall, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (03) :1677-1680
[9]   Microtubule polymerization dynamics [J].
Desai, A ;
Mitchison, TJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :83-117
[10]   Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170 [J].
Fukata, M ;
Watanabe, T ;
Noritake, J ;
Nakagawa, M ;
Yamaga, M ;
Kuroda, S ;
Matsuura, Y ;
Iwamatsu, A ;
Perez, F ;
Kaibuchi, K .
CELL, 2002, 109 (07) :873-885