The Decadal Climate Prediction Project (DCPP) contribution to CMIP6

被引:337
作者
Boer, George J. [1 ]
Smith, Douglas M. [2 ]
Cassou, Christophe [3 ]
Doblas-Reyes, Francisco [4 ,5 ]
Danabasoglu, Gokhan [6 ]
Kirtman, Ben [7 ]
Kushnir, Yochanan [8 ]
Kimoto, Masahide [9 ]
Meehl, Gerald A. [6 ]
Msadek, Rym [3 ,13 ]
Mueller, Wolfgang A. [10 ]
Taylor, Karl E. [11 ]
Zwiers, Francis [12 ]
Rixen, Michel [14 ]
Ruprich-Robert, Yohan [15 ]
Eade, Rosie [2 ]
机构
[1] Environm & Climate Change Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada
[2] Hadley Ctr, Met Off, Exeter, Devon, England
[3] CNRS, UMR 5318, CERFACS, CECI, Toulouse, France
[4] ICREA, Barcelona, Spain
[5] Barcelona Supercomp Ctr BSC CNS, Barcelona, Spain
[6] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[7] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
[8] Lamont Doherty Earth Observ, Palisades, NY USA
[9] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo, Japan
[10] Max Planck Inst Meteorol, Hamburg, Germany
[11] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison PCMD, Livermore, CA USA
[12] Pacific Climate Impacts Consortium, Victoria, BC, Canada
[13] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[14] World Climate Res Programme, Geneva, Switzerland
[15] Princeton Univ, Atmosphere & Ocean Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
MODEL INTERCOMPARISON PROJECT; EXPERIMENTAL-DESIGN; OCEAN; INITIALIZATION;
D O I
10.5194/gmd-9-3751-2016
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Prediction (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the "hiatus", volcanoes), including the study of the mechanisms that determine these behaviours. Groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them. The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.
引用
收藏
页码:3751 / 3777
页数:27
相关论文
共 48 条
[1]  
[Anonymous], 2013, CONTRIBUTION WORKING, DOI 10.1017/CBO9781107415324
[2]  
Asrar R. A., 2013, CLIMATE SCI SERVING, DOI [10.1007/978-94-007-6692-1, DOI 10.1007/978-94-007-6692-1]
[3]   The Ocean Reanalyses Intercomparison Project (ORA-IP) [J].
Balmaseda, M. A. ;
Hernandez, F. ;
Storto, A. ;
Palmer, M. D. ;
Alves, O. ;
Shi, L. ;
Smith, G. C. ;
Toyoda, T. ;
Valdivieso, M. ;
Barnier, B. ;
Behringer, D. ;
Boyer, T. ;
Chang, Y-S. ;
Chepurin, G. A. ;
Ferry, N. ;
Forget, G. ;
Fujii, Y. ;
Good, S. ;
Guinehut, S. ;
Haines, K. ;
Ishikawa, Y. ;
Keeley, S. ;
Koehl, A. ;
Lee, T. ;
Martin, M. J. ;
Masina, S. ;
Masuda, S. ;
Meyssignac, B. ;
Mogensen, K. ;
Parent, L. ;
Peterson, K. A. ;
Tang, Y. M. ;
Yin, Y. ;
Vernieres, G. ;
Wang, X. ;
Waters, J. ;
Wedd, R. ;
Wang, O. ;
Xue, Y. ;
Chevallier, M. ;
Lemieux, J-F. ;
Dupont, F. ;
Kuragano, T. ;
Kamachi, M. ;
Awaji, T. ;
Caltabiano, A. ;
Wilmer-Becker, K. ;
Gaillard, F. .
JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2015, 8 :S80-S97
[4]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[5]   Decadal predictability and forecast skill [J].
Boer, G. J. ;
Kharin, V. V. ;
Merryfield, W. J. .
CLIMATE DYNAMICS, 2013, 41 (7-8) :1817-1833
[6]   Multiannual forecasts of Atlantic US tropical cyclone wind damage potential [J].
Caron, Louis-Philippe ;
Hermanson, Leon ;
Doblas-Reyes, Francisco J. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (07) :2417-2425
[7]   Skill improvement from increased ensemble size and model diversity [J].
DelSole, Timothy ;
Nattala, Jyothi ;
Tippett, Michael K. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (20) :7331-7342
[8]   Initialized near-term regional climate change prediction [J].
Doblas-Reyes, F. J. ;
Andreu-Burillo, I. ;
Chikamoto, Y. ;
Garcia-Serrano, J. ;
Guemas, V. ;
Kimoto, M. ;
Mochizuki, T. ;
Rodrigues, L. R. L. ;
van Oldenborgh, G. J. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? [J].
Eade, Rosie ;
Smith, Doug ;
Scaife, Adam ;
Wallace, Emily ;
Dunstone, Nick ;
Hermanson, Leon ;
Robinson, Niall .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (15) :5620-5628
[10]   Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J].
Eyring, Veronika ;
Bony, Sandrine ;
Meehl, Gerald A. ;
Senior, Catherine A. ;
Stevens, Bjorn ;
Stouffer, Ronald J. ;
Taylor, Karl E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) :1937-1958