FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana

被引:83
作者
Schmitz, RJ
Hong, L
Michaels, S
Amasino, RM [1 ]
机构
[1] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
来源
DEVELOPMENT | 2005年 / 132卷 / 24期
关键词
winter annuals; FLOWERING LOCUS C (FLC); FRIGIDA (FRI); flowering time; CCCH zinc finger;
D O I
10.1242/dev.02170
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies of natural variation have revealed that the winter-annual habit of many accessions of Arabidopsis is conferred by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), whose activities impose a vernalization requirement To better understand the mechanism underlying the winter-annual habit, a genetic screen was performed to identify mutants that suppress the late-flowering behavior of a non-vernalized winter-annual strain. We have identified a locus, FRIGIDA-ESSENTIAL 1 (FES1), which, like FRI, is specifically required for the upregulation of FLC expression. FES1 is predicted to encode a protein with a CCCH zinc finger, but the predicted sequence does not otherwise share significant similarity with other known proteins. fes1 is a complete suppressor of FRI-mediated delayed flowering, but has little effect on the late-flowering phenotype of autonomous-pathway mutants. Thus, FES1 activity is required for the FRI-mediated winter-annual habit, but not for the similar phenotype resulting from autonomous-pathway mutations. Epistasis analysis between FES1, FRI and another specific suppressor of FRI-containing lines, FRIGIDA-LIKE 1 (FRL1), indicates that these genes do not function in a linear pathway, but instead act cooperatively to promote the expression of FLC.
引用
收藏
页码:5471 / 5478
页数:8
相关论文
共 50 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Vernalization requires epigenetic silencing of FLC by histone methylation [J].
Bastow, R ;
Mylne, JS ;
Lister, C ;
Lippman, Z ;
Martienssen, RA ;
Dean, C .
NATURE, 2004, 427 (6970) :164-167
[3]   Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis [J].
Bezerra, IC ;
Michaels, SD ;
Schomburg, FM ;
Amasino, RM .
PLANT JOURNAL, 2004, 40 (01) :112-119
[4]   A MADS domain gene involved in the transition to flowering in Arabidopsis [J].
Borner, R ;
Kampmann, G ;
Chandler, J ;
Gleissner, R ;
Wisman, E ;
Apel, K ;
Melzer, S .
PLANT JOURNAL, 2000, 24 (05) :591-599
[5]   Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
SCIENCE, 1998, 281 (5379) :1001-1005
[6]   Two RNA binding proteins, HEN4 and HUM, act in the processing of AGAMOUS Pre-mRNA in Arabidopsis thaliana [J].
Cheng, YL ;
Kato, N ;
Wang, WM ;
Li, JJ ;
Chen, XM .
DEVELOPMENTAL CELL, 2003, 4 (01) :53-66
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469
[9]   HUA2 is required for the expression of floral repressors in Arabidopsis thaliana [J].
Doyle, MR ;
Bizzell, CM ;
Keller, MR ;
Michaels, SD ;
Song, JD ;
Noh, YS ;
Amasino, RM .
PLANT JOURNAL, 2005, 41 (03) :376-385
[10]   Analysis of the molecular basis of flowering time variation in Arabidopsis accessions [J].
Gazzani, S ;
Gendall, AR ;
Lister, C ;
Dean, C .
PLANT PHYSIOLOGY, 2003, 132 (02) :1107-1114