Superperturbation solver for quantum impurity models

被引:47
作者
Hafermann, H. [1 ]
Jung, C. [1 ]
Brener, S. [1 ]
Katsnelson, M. I. [2 ]
Rubtsov, A. N. [3 ]
Lichtenstein, A. I. [1 ]
机构
[1] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany
[2] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[3] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia
关键词
MEAN-FIELD THEORY; INFINITE DIMENSIONS;
D O I
10.1209/0295-5075/85/27007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a very efficient solver for the general Anderson impurity problem. It is based on the perturbation around a solution obtained from exact diagonalization, using a small number of bath sites. We formulate a perturbation theory which is valid for both weak and strong coupling and interpolates between these limits. Good agreement with numerically exact quantum Monte Carlo results is found for a single bath site over a wide range of parameters. In particular, the Kondo resonance in the intermediate-coupling regime is well reproduced for a single bath site and the lowest-order correction. The method is particularly suited for low temperatures, alleviates analytical continuation of imaginary time data due to the absence of statistical noise and can be generalized to obtain dynamical quantities directly on the real axis. Copyright (C) EPLA, 2009
引用
收藏
页数:6
相关论文
共 18 条
[1]   CONSERVATION LAWS AND CORRELATION FUNCTIONS [J].
BAYM, G ;
KADANOFF, LP .
PHYSICAL REVIEW, 1961, 124 (02) :287-+
[2]   Dual fermion approach to susceptibility of correlated lattice fermions [J].
Brener, S. ;
Hafermann, H. ;
Rubtsov, A. N. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (19)
[3]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[4]   Strong-coupling solver for the quantum impurity model [J].
Dai, X ;
Haule, K ;
Kotliar, G .
PHYSICAL REVIEW B, 2005, 72 (04)
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   Cluster dual fermion approach to nonlocal correlations [J].
Hafermann, H. ;
Brener, S. ;
Rubtsov, A. N. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
JETP LETTERS, 2007, 86 (10) :677-682
[7]   Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base [J].
Haule, Kristjan .
PHYSICAL REVIEW B, 2007, 75 (15)
[8]  
HEWSON AC, 1993, KONDO PROBLEM HEAVY, P22329
[9]   Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data [J].
Jarrell, M ;
Gubernatis, JE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 269 (03) :133-195
[10]   Half-metallic ferromagnets: From band structure to many-body effects [J].
Katsnelson, M. I. ;
Irkhin, V. Yu. ;
Chioncel, L. ;
Lichtenstein, A. I. ;
de Groot, R. A. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :315-378