Fine-Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%

被引:312
作者
Luo, Zhenghui [1 ,2 ]
Bin, Haijun [3 ]
Liu, Tao [4 ]
Zhang, Zhi-Guo [3 ]
Yang, Yankang [3 ]
Zhong, Cheng [1 ]
Qiu, Beibei [3 ]
Li, Guanghao [1 ]
Gao, Wei [1 ]
Xie, Dongjun [1 ]
Wu, Kailong [1 ]
Sun, Yanming [4 ]
Liu, Feng [5 ,6 ]
Li, Yongfang [3 ]
Yang, Chuluo [1 ,2 ]
机构
[1] Wuhan Univ, Dept Chem, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Hubei, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Inst Chem, CAS Key Lab Organ Solids, CAS Res Educ Ctr Excellence Mol Sci, Beijing 100190, Peoples R China
[4] Beihang Univ, Sch Chem & Environm, Heeger Beijing Res & Dev Ctr, Beijing 100191, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
[6] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA CICIFSA, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
molecular packing; polymer solar cells; power conversion efficiencies; small molecular acceptors; NONPLANAR PERYLENE DIIMIDES; RING ELECTRON-ACCEPTOR; BANDGAP POLYMER; FULLERENE; PERFORMANCE; DESIGN; OPTIMIZATION; STRATEGY; ACHIEVE; NETWORK;
D O I
10.1002/adma.201706124
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel small molecule acceptor MeIC with a methylated end-capping group is developed. Compared to unmethylated counterparts (ITCPTC), MeIC exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm. The MeIC-based polymer solar cells (PSCs) with J71 as donor, achieve high power conversion efficiency (PCE), up to 12.54% with a short-circuit current (J(SC)) of 18.41 mA cm(-2), significantly higher than that of the device based on J71:ITCPTC (11.63% with a J(SC) of 17.52 mA cm(-2)). The higher J(SC) of the PSC based on J71:MeIC can be attributed to more balanced (h)/(e), higher charge dissociation and charge collection efficiency, better molecular packing, and more proper phase separation features as indicated by grazing incident X-ray diffraction and resonant soft X-ray scattering results. It is worth mentioning that the as-cast PSCs based on MeIC also yield a high PCE of 11.26%, which is among the highest value for the as-cast nonfullerene PSCs so far. Such a small modification that leads to so significant an improvement of the photovoltaic performance is a quite exciting finding, shining a light on the molecular design of the nonfullerene acceptors.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Materials and Applications for Large Area Electronics: Solution-Based Approaches [J].
Arias, Ana Claudia ;
MacKenzie, J. Devin ;
McCulloch, Iain ;
Rivnay, Jonathan ;
Salleo, Alberto .
CHEMICAL REVIEWS, 2010, 110 (01) :3-24
[2]   Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolyl-methylenemalononitrile for polymer solar cells [J].
Bai, Huitao ;
Wu, Yao ;
Wang, Yifan ;
Wu, Yang ;
Li, Rong ;
Cheng, Pei ;
Zhang, Mingyu ;
Wang, Jiayu ;
Ma, Wei ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20758-20766
[3]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[4]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[5]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[6]   Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices [J].
Chen, Junwu ;
Cao, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1709-1718
[7]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[8]   Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor [J].
Duan, Yuwei ;
Xu, Xiaopeng ;
Yan, He ;
Wu, Wenlin ;
Li, Zuojia ;
Peng, Qiang .
ADVANCED MATERIALS, 2017, 29 (07)
[9]   Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% [J].
Fan, Baobing ;
Ying, Lei ;
Wang, Zhenfeng ;
He, Baitian ;
Jiang, Xiao-Fang ;
Huang, Fei ;
Cao, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1243-1251
[10]   High-Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor [J].
Gao, Liang ;
Zhang, Zhi-Guo ;
Bin, Haijun ;
Xue, Lingwei ;
Yang, Yankang ;
Wang, Cheng ;
Liu, Feng ;
Russell, Thomas P. ;
Li, Yongfang .
ADVANCED MATERIALS, 2016, 28 (37) :8288-8295