Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system

被引:35
作者
Stoodley, P
Dodds, I
De Beer, D
Scott, HL
Boyle, JD
机构
[1] Univ Exeter, Sch Biol Sci, Exeter EX4 4QJ, Devon, England
[2] Univ Exeter, Sch Engn Math & Comp Sci, Exeter EX4 4QJ, Devon, England
[3] Max Planck Inst Marine Microbiol, Bremen, Germany
关键词
biofilm; flow; friction factor; hydrodynamics; porous media; morphology;
D O I
10.1080/08927010500375524
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 mu m h(-1) in the turbulent flow cell and 1.0 mu m h(-1) in the laminar flow cell.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 32 条
[1]   The biofilm matrix [J].
Flemming, Hans-Curt ;
Wingender, Jost .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (09) :623-633
[2]  
[Anonymous], **NON-TRADITIONAL**
[3]  
Bass C, 1997, OILFIELD REV, V9, P17
[4]   Effects of current velocity on the nascent architecture of stream microbial biofilms [J].
Battin, TJ ;
Kaplan, LA ;
Newbold, JD ;
Cheng, XH ;
Hansen, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5443-5452
[5]  
Bouwer E., 2000, BIOFILMS POROUS MEDI, P123
[6]   The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization [J].
Bühring, SI ;
Elvert, M ;
Witte, U .
ENVIRONMENTAL MICROBIOLOGY, 2005, 7 (02) :281-293
[7]  
Carman P. C., 1937, T I CHEM ENG-LOND, V15, P150, DOI [10.1016/S0263-8762(97)80003-2, 10.1016/s0263-8762, DOI 10.1016/S0263-8762(97)80003-2]
[8]  
Coulson JM., 1949, T I CHEM ENG-LOND, V27, P237
[9]  
COULSON JM, 1996, CHEM ENG, V2
[10]   INFLUENCE OF BIOFILM ACCUMULATION ON POROUS-MEDIA HYDRODYNAMICS [J].
CUNNINGHAM, AB ;
CHARACKLIS, WG ;
ABEDEEN, F ;
CRAWFORD, D .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (07) :1305-1311