Almost-Hermitian random matrices: Eigenvalue density in the complex plane

被引:124
作者
Fyodorov, YV
Khoruzhenko, BA
Sommers, HJ
机构
[1] UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
[2] UNIV ESSEN GESAMTHSCH,FACHBEREICH PHYS,D-45117 ESSEN,GERMANY
关键词
random matrices; complex eigenvalues; disordered systems;
D O I
10.1016/S0375-9601(96)00904-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an ensemble of large non-Hermitian random matrices of the form (H) over cap + i (A) over cap(s), where (H) over cap and (A) over cap(s) are Hermitian statistically independent random N x N matrices. We demonstrate the existence of a new nontrivial regime of weak non-Hermiticity characterized by the condition that the average of NTr (A) over cap(s)(2) is of the same order as that of Tr (H) over cap(2) when N --> infinity. We find explicitly the density of complex eigenvalues for this regime in the limit of infinite matrix dimension. The density determines the eigenvalue distribution in the crossover regime between random Hermitian matrices whose real eigenvalues are distributed according to the Wigner semi-circle law and random complex matrices whose eigenvalues are distributed in the complex plane according to the so-called ''elliptic law''.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 33 条
[1]  
Bessis D., 1980, Adv. Appl. Math., V1, P109, DOI 10.1016/0196-8858(80)90008-1
[2]   UNIVERSALITY OF THE CORRELATIONS BETWEEN EIGENVALUES OF LARGE RANDOM MATRICES [J].
BREZIN, E ;
ZEE, A .
NUCLEAR PHYSICS B, 1993, 402 (03) :613-627
[3]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[4]   CONTROL OF THE TRANSITION TO CHAOS IN NEURAL NETWORKS WITH RANDOM CONNECTIVITY [J].
Doyon, B. ;
Cessac, B. ;
Quoy, M. ;
Samuelides, M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :279-291
[5]  
EDELMAN A, 1993, CIRCULAR LAW PROBABI
[6]  
Edelman A., 1994, J. Am. Math. So., V7, P247, DOI DOI 10.1090/S0894-0347-1994-1231689-0
[7]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[8]   Universality of "level curvature" distribution for large random matrices: systematic analytical approaches [J].
Fyodorov, Yan V. ;
Sommers, Hans-Juergen .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 99 (01) :123-135
[9]  
FYODOROV YV, UNPUB U EIGENVALUE D
[10]  
FYODOROV YV, 1996, JETP LETT, V63, P970