Initial-boundary value problems for nonlinear systems of conservation laws

被引:80
作者
Amadori, Debora [1 ]
机构
[1] SISSA, ISAS, I-34014 Trieste, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 1997年 / 4卷 / 01期
关键词
Boundary Condition; Total Variation; Nonlinear System; Distinct Type; Global Existence;
D O I
10.1007/PL00001406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The system of conservation laws u(t) + [f(u)](x) = 0 (1) is considered on a domain {(t, x); t >= 0, x > Psi (t)}, for a continuous map Psi : [0; infinity) -> R, subject to the initial condition u(0, x) = u(x), x > Psi (0). (2) We prove two global existence theorems for (1) - (2) for two distinct types of boundary conditions, with data of small total variation.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 11 条
[1]  
[Anonymous], THESIS CALIFORNIA U
[2]   GLOBAL-SOLUTIONS OF SYSTEMS OF CONSERVATION-LAWS BY WAVE-FRONT TRACKING [J].
BRESSAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 170 (02) :414-432
[3]  
BRESSAN A., 1994, LECT NOTES SYSTEMS C
[4]   BOUNDARY-CONDITIONS FOR NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS [J].
DUBOIS, F ;
LEFLOCH, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :93-122
[5]   EXISTENCE AND UNIQUENESS RESULTS OF MIXED-PROBLEMS FOR HYPERBOLIC-SYSTEMS OF 1-DIMENSIONAL CONSERVATION-LAWS [J].
DUBROCA, B ;
GALLICE, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (01) :59-80
[7]   HYPERBOLIC SYSTEMS OF CONSERVATION LAWS .2. [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :537-566
[8]   MIXED PROBLEMS FOR NONLINEAR CONSERVATION LAWS [J].
NISHIDA, T ;
SMOLLER, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 23 (02) :244-269
[9]  
RISEBRO NH, 1993, P AM MATH SOC, V117, P1125
[10]   GLIMM METHOD AND INITIAL-BOUNDARY VALUE-PROBLEM [J].
SABLETOUGERON, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (04) :423-443