The in-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly in proton exchange membrane fuel cells

被引:40
作者
Alhazmi, N. [1 ]
Ismail, M. S. [1 ]
Ingham, D. B. [1 ]
Hughes, K. J. [1 ]
Ma, L. [1 ]
Pourkashanian, M. [1 ]
机构
[1] Univ Leeds, Ctr Computat Fluid Dynam, Energy Technol Innovat Initiat, Leeds LS2 9JT, W Yorkshire, England
关键词
In-plane thermal conductivity; Gas diffusion layer; Micro porous layer; Catalyst layer; Membrane; Fuel cell;
D O I
10.1016/j.jpowsour.2013.04.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the thermal properties of the materials which are used in a proton exchange membrane fuel cell (PEM) is essential for the thermal management of a PEM fuel cell and consequently for improving its performance. In this paper, the parallel thermal conductance technique (PTC) has been employed to obtain the in-plane thermal conductivity and the contact resistance of several components of the membrane electrode assembly (MEA). In addition, the effects of temperature, polytetrafluoroethylene (PTFE) loading, micro porous layer (MPL) coating and the fibre direction on the in-plane thermal conductivity of the gas diffusion layer (GDL) have been investigated. The in-plane thermal conductivity of the GDL was found to decrease with increasing temperature and increase slightly with increasing PTFE loading and MPL coating. Further, the in-plane thermal conductivity of the membrane increased with higher amounts of water in the membrane. The in-plane thermal conductivity of the catalyst layer was found to be insensitive to the temperature and it increased with platinum loading. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1989, FLOW TRANSPORT POROU, DOI DOI 10.1007/978-3-642-75015-1
[2]  
Berning Torsten., 2002, "Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell"
[3]   High temperature thermal conductivity of platinum microwire by 3ω method [J].
Bhatta, Rudra P. ;
Annamalai, Sezhian ;
Mohr, Robert K. ;
Brandys, Marek ;
Pegg, Ian L. ;
Dutta, Biprodas .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[4]   Characterization of PTFE Using Advanced Thermal Analysis Techniques [J].
Blumm, J. ;
Lindemann, A. ;
Meyer, M. ;
Strasser, C. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (10) :1919-1927
[5]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[6]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[7]   Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading [J].
Hamour, M. ;
Garnier, J. P. ;
Grandidier, J. C. ;
Ouibrahim, A. ;
Martemianov, S. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2011, 32 (05) :1025-1037
[8]  
Ismail M. S., 2012, INT J ENERGY RES
[9]   Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media [J].
Karimi, G. ;
Li, X. ;
Teertstra, P. .
ELECTROCHIMICA ACTA, 2010, 55 (05) :1619-1625
[10]   Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials [J].
Khandelwal, Manish ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1106-1115