Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction

被引:118
作者
Hahn, Christopher [1 ,2 ]
Abram, David N. [1 ]
Hansen, Heine A. [2 ]
Hatsukade, Toru [1 ]
Jackson, Ariel [3 ]
Johnson, Natalie C. [4 ]
Hellstern, Thomas R. [1 ]
Kuhl, Kendra P. [5 ]
Cave, Etosha R. [6 ]
Feaster, Jeremy T. [1 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; PD; HYDROGEN; SEGREGATION; ELECTRODES;
D O I
10.1039/c5ta04863j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We synthesize and investigate AuPd alloys for the electrocatalytic reduction of CO2. Thin films of AuPd were synthesized using an electron-beam co-deposition method, which yields uniform, phase-pure metal alloys with composition control. Scanning electron microscope images show that the thin films are relatively uniform and flat in morphology. X-ray diffraction showed alloying and phase homogeneity within the AuPd thin films. Elemental mapping of Au and Pd with scanning transmission electron microscopy shows that AuPd thin films are uniform in composition on the nanometer scale. X-ray photoelectron spectroscopy characterization indicates that AuPd alloys are slightly Au-rich on the surface and follow a similar trend to the bulk composition as determined by Vegard's Law. CO2 reduction activity and selectivity were investigated across the AuPd system. All AuPd alloys were found to be more active and selective for formate production than either of the pure metals, indicating that Au and Pd can act synergistically to yield new electrocatalytic properties.
引用
收藏
页码:20185 / 20194
页数:10
相关论文
共 29 条
[1]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[2]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359
[3]   Nanoalloys: From theory to applications of alloy clusters and nanoparticles [J].
Ferrando, Riccardo ;
Jellinek, Julius ;
Johnston, Roy L. .
CHEMICAL REVIEWS, 2008, 108 (03) :845-910
[4]   CO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: CO Adsorption-Induced Surface Segregation and Reaction Kinetics [J].
Gao, Fcng ;
Wang, Yilin ;
Goodman, D. Wayne .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :14993-15000
[5]   Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy [J].
Graves, Christopher ;
Ebbesen, Sune D. ;
Mogensen, Mogens ;
Lackner, Klaus S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :1-23
[6]   Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO [J].
Hansen, Heine A. ;
Varley, Joel B. ;
Peterson, Andrew A. ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (03) :388-392
[7]  
Haynes W. M., 2013, CRC HDB CHEM PHYS, V94th
[8]   Composition-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid [J].
Hirano, Masanori ;
Enokida, Kazuki ;
Okazaki, Ken-ichi ;
Kuwabata, Susumu ;
Yoshida, Hisao ;
Torimoto, Tsukasa .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (19) :7286-7294
[9]   ELECTROCATALYTIC PROCESS OF CO SELECTIVITY IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL-ELECTRODES IN AQUEOUS-MEDIA [J].
HORI, Y ;
WAKEBE, H ;
TSUKAMOTO, T ;
KOGA, O .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1833-1839
[10]  
Hori Y, 2008, MOD ASP ELECTROCHEM, P89