Protein Mechanics: A New Frontier in Biomechanics

被引:25
作者
Bao, G. [1 ,2 ]
机构
[1] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
关键词
Protein; Deformation; Biomechanics; Conformational change; Mechanotransduction; EXTRACELLULAR-MATRIX; ENERGY TRANSDUCTION; CELLULAR-RESPONSE; FIBRONECTIN; ELASTICITY; ADHESION; MOLECULES; KINESIN; FORCE; MECHANOTRANSDUCTION;
D O I
10.1007/s11340-008-9154-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Proteins play essential roles in all aspects of cellular processes, such as biosynthesis, division, growth, motility, metabolism, signaling, and transmission of genetic information. Proteins, however, could deform under mechanical forces, thus altering their biological functions. Here we present protein deformation as a possible molecular basis for mechanosensing and mechanotransduction, elucidate the important features of protein mechanics including protein deformation mode and dynamics, illustrate how protein deformation could alter biological function, and describe the important roles of protein deformation in force-sensing, force transducing and mechanochemical coupling in cells. The experimental and modeling challenges in protein mechanics are discussed.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 63 条
[1]  
Alberts B., 2007, Molecular Biology of the Cell. (4th edition), Vfifth
[2]   Endothelial responses to mechanical stress: Where is the mechanosensor? [J].
Ali, MH ;
Schumacker, PT .
CRITICAL CARE MEDICINE, 2002, 30 (05) :S198-S206
[3]   Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5139-5143
[4]   Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14464-14468
[5]   Mechanics of biomolecules [J].
Bao, G .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (11) :2237-2274
[6]   Cell and molecular mechanics of biological materials [J].
Bao, G ;
Suresh, S .
NATURE MATERIALS, 2003, 2 (11) :715-725
[7]   Adhesion-dependent cell mechanosensitivity [J].
Bershadsky, AD ;
Balaban, NQ ;
Geiger, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2003, 19 :677-695
[8]   Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize [J].
Bershadsky, Alexander ;
Kozlov, Michael ;
Geiger, Benjamin .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (05) :472-481
[9]   BEAD MOVEMENT BY SINGLE KINESIN MOLECULES STUDIED WITH OPTICAL TWEEZERS [J].
BLOCK, SM ;
GOLDSTEIN, LSB ;
SCHNAPP, BJ .
NATURE, 1990, 348 (6299) :348-352
[10]   THE BINDING CHANGE MECHANISM FOR ATP SYNTHASE - SOME PROBABILITIES AND POSSIBILITIES [J].
BOYER, PD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1140 (03) :215-250