On the convergence of uncertain sequences

被引:135
作者
You, Cuilian [1 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertain measure; Uncertain variable; Expected value; Convergence; FUZZY RANDOM-VARIABLES;
D O I
10.1016/j.mcm.2008.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertain variables are measurable functions from uncertainty spaces to the set of real numbers. In this paper, a new kind of convergence, convergence uniformly almost surely (convergence uniformly a.s.), is presented. Then, relations between convergence uniformly almost surely and convergence almost surely (convergence a.s.), convergence in measure, convergence in mean, and convergence in distribution are discussed. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:482 / 487
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1987, Statistics with vague data
[2]  
[Anonymous], 2003, FUZZY OPTIM DECIS MA
[3]  
Gao J., 2001, INT J FUZZY SYST, V3, P527
[4]   FUZZY RANDOM-VARIABLES .2. ALGORITHMS AND EXAMPLES FOR THE DISCRETE CASE [J].
KWAKERNAAK, H .
INFORMATION SCIENCES, 1979, 17 (03) :253-278
[5]   FUZZY RANDOM-VARIABLES .1. DEFINITIONS AND THEOREMS [J].
KWAKERNAAK, H .
INFORMATION SCIENCES, 1978, 15 (01) :1-29
[6]  
LI X, SOFT COMPUT IN PRESS
[7]  
Liu B., 2002, Theory and practice of uncertain programming
[8]  
Liu B., 2004, Uncertainty theory. An introduction to its axiomatic foundations. Berlin: Springer-Verlag
[9]  
Liu B., 2003, Fuzzy Optimization and Decision Making, V2, P87
[10]  
Liu B., 2006, Fuzzy optimization and decision making, V5, P387, DOI DOI 10.1007/S10700-006-0016-X