mspire: mass spectrometry proteomics in Ruby

被引:15
作者
Prince, John T. [1 ,2 ]
Marcotte, Edward M. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Inst Mol & Cellular Biol, Austin, TX 78712 USA
[2] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btn513
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry-based proteomics stands to gain from additional analysis of its data, but its large, complex datasets make demands on speed and memory usage requiring special consideration from scripting languages. The software library 'mspire'-developed in the Ruby programming language-offers quick and memory-efficient readers for standard xml proteomics formats, converters for intermediate. le types in typical proteomics spectral-identification workflows ( including the Bioworks. srf format), and modules for the calculation of peptide false identification rates. Availability: Freely available at http://mspire.rubyforge.org. Additional data models, usage information, and methods available at http://bioinformatics.icmb.utexas.edu/mspire Contact: marcotte@icmb.utexas.edu
引用
收藏
页码:2796 / 2797
页数:2
相关论文
共 4 条
  • [1] InSilicoSpectro: An open-source proteomics library
    Colinge, J
    Masselot, A
    Carbonell, P
    Appel, RD
    [J]. JOURNAL OF PROTEOME RESEARCH, 2006, 5 (03) : 619 - 624
  • [2] Desiere F, 2006, NUCLEIC ACIDS RES, V34, pD655, DOI [10.1093/nar/gkj040, 10.1007/978-1-60761-444-9_19]
  • [3] ProteomeCommons.org IO Framework: reading and writing multiple proteomics data formats
    Falkner, J. A.
    Falkner, J. W.
    Andrews, P. C.
    [J]. BIOINFORMATICS, 2007, 23 (02) : 262 - 263
  • [4] Semi-supervised learning for peptide identification from shotgun proteomics datasets
    Kall, Lukas
    Canterbury, Jesse D.
    Weston, Jason
    Noble, William Stafford
    MacCoss, Michael J.
    [J]. NATURE METHODS, 2007, 4 (11) : 923 - 925