ON THE COMPUTATION OF THE RANK-ONE CONVEX HULL OF A FUNCTION

被引:14
作者
Aranda, Ernesto [1 ]
Pedregal, Pablo [1 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
关键词
laminates; maximum number of levels; rank-one convex hull;
D O I
10.1137/S1064827599362028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report on several numerical experiments where the rank-one convexification of an energy density is computed. The explicit examples cover a whole spectrum of typical situations one may encounter. One of those is especially relevant for the computation of microstructures in crystalline solids.
引用
收藏
页码:1772 / 1790
页数:19
相关论文
共 56 条
[1]  
ARANDA E., APPROXIMATED R UNPUB
[2]  
ARANDA E., NUMER MATH IN PRESS
[3]   PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM [J].
BALL, JM ;
JAMES, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650) :389-450
[4]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[5]  
BATTACHARYA K., 1994, P ROY SOC EDINB A, V124, P843
[6]   APPROXIMATED CONVEX ENVELOPE OF A FUNCTION [J].
BRIGHI, B ;
CHIPOT, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) :128-148
[7]  
Byrd RH, 1996, NAM03 NW U DEP EL EN
[8]  
BYRD RH, 1994, NAM08 NW U DEP EL EN
[9]   NUMERICAL-ANALYSIS OF OSCILLATIONS IN NONCONVEX PROBLEMS [J].
CHIPOT, M .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :747-767
[10]   NUMERICAL-ANALYSIS OF OSCILLATIONS IN MULTIPLE WELL PROBLEMS [J].
CHIPOT, M ;
COLLINS, C ;
KINDERLEHRER, D .
NUMERISCHE MATHEMATIK, 1995, 70 (03) :259-282