On the Fundamental Limits of Adaptive Sensing

被引:70
作者
Arias-Castro, Ery [1 ]
Candes, Emmanuel J. [2 ,3 ]
Davenport, Mark A. [4 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[4] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Adaptive sensing; compressed sensing; hypothesis tests; information bounds; sparse signal estimation; support recovery; REGRESSION; BOUNDS;
D O I
10.1109/TIT.2012.2215837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose we can sequentially acquire arbitrary linear measurements of an n-dimensional vector resulting in the linear model y = Ax + z, where represents measurement noise. If the signal is known to be sparse, one would expect the following folk theorem to be true: choosing an adaptive strategy which cleverly selects the next row of based on what has been previously observed should do far better than a nonadaptive strategy which sets the rows of ahead of time, thus not trying to learn anything about the signal in between observations. This paper shows that the folk theorem is false. We prove that the advantages offered by clever adaptive strategies and sophisticated estimation procedures-no matter how intractable-over classical compressed acquisition/recovery schemes are, in general, minimal.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 31 条
[1]   Information Theoretic Bounds for Compressed Sensing [J].
Aeron, Shuchin ;
Saligrama, Venkatesh ;
Zhao, Manqi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (10) :5111-5130
[2]  
[Anonymous], APPL COMPUT IN PRESS
[3]  
ASSOUAD P, 1983, CR ACAD SCI I-MATH, V296, P1021
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[6]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[7]   Finding needles in noisy haystacks [J].
Castro, R. M. ;
Haupt, J. ;
Nowak, R. ;
Raz, G. M. .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :5133-+
[8]   Minimax bounds for active learning [J].
Castro, Rui M. ;
Nowak, Robert D. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (05) :2339-2353
[9]  
Cover T. M., 1999, Elements of information theory
[10]  
Davenport M. A., 2012, Proceedings of the 2012 IEEE International Symposium on Information Theory - ISIT, P1827, DOI 10.1109/ISIT.2012.6283595